o AD-£SD] 293
g?w del CUPY Copy 10 of 14 copies

IDA MEMORANDUM REPORT M-540

IDA AND THE TECHNICAL COOPERATION PROGRAM
REAL-TIME SYSTEMS AND Ada WORKSHOP,
21-23 JUNE 1988

James Baldo

DTIC

\ ELECTE
06T 30 1990

@DB

June 1988

Prepared for
STARS Joint Program Office

! - DISTHIBUTION s"m“‘“

, 9‘1)/ W TS SLE yadl& ANWW; !

Diambuﬂon Unnmima,

INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria, Virginia 22311-1772

DEFINITIONS

1DA publishes the following documents to repart the resuits of its work.

Reports

Reports are the most authoritative and most carefully considered products IDA publishes.
They normally embody results of major projects which (a) have a direct hearing on
decisions alfecting major programs, (b) address issues of significant concern to the
Executive Branch, the Congress and/or the publle, or (c) address issues that have
signiticant economic implications. IDA Reports are reviewed by outside panels of experts
to ensure thelr high quality and relevance to the problems studied, and they are released
by the President of IDA.

Group Reports

Group Reports record the findings and results of 1DA established working groups and
panels composed ol senfor individuals addressing major issues which otherwise would be
the subject of an IDA Report. 1DA Group Reports are reviewed by the senior individuals
responsible for the project and others as selected by [DA ta ensure their high quality and
relevance to the probiems studied, and are released by the President of IDA.

Papers

Papers, also authoritative and carefuily considered products of 1DA, address studies that
are narrower in scope than those covered in Reports. IDA Papers are reviewed to ensure
that they meet the high standards expected of refereed papers in professional journals ot
formal Agency reports.

Memorandum Reporis

IDA Memorandum Reports are used for the convenience of the sponsors or the analysts to
record substantive work done in quick reaction studies and major interactive technical
support activities; to make avallable preliminary and tentative results of analyses or of
working group and panel activities; to forward Information that is essentially unanalyzed
and unevaluated; or to make a record of conferences, meclings, or hrigfings, or of data
developed in the course of an investigation. Review of Memorandum Reporls is suited {3
their content and intended use.

The results of IDA waork are also conveyed by briefings an¢ infcrmal memorasda to
sponsors and others designated by sponsors, when appraztisie,

The work reported In this document was conductad undar contr>ct MDA 373 84 C 0031 for
the Depariment of Defense. The publication of this IDA document does not wndicate
endorsement by the Department of Defense, nor should the contents be construed as
reflecting the ofticial position of that Agency.

This Memorandum Report is published in order to make available the material it contains
for the use and convenience of interested parties. The material has not necessarily been
completely evaluated and analyzed, nor subjected to 1DA revigw.

© 1990 Institute for Defense Analyses

The Government of the United States is granted an unhimited license to reproduce this
document,

Approved for public release, unlimited distribution; 27 August 1990. Unclassitied.

e

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public teporting butden for this collaction of Information ls estimated to average 1 hour per responss, including the time for reviewing instructions, searching existing data soutces, gathering and
malntalning the data needed, and completing and reviewing the collection of Information. Send comments regarding this burden estimate or any other aspect of this coliecticn of information,
Including sugqestions for reducing this burden, to Wast.Ington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jetferson Davis Highway, Sulte 1204, Arlington,
VA 22202-4302, and {o the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, 13C 20503,

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 1988 Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
IDA and the Technical Cooperation ®rogram Real-Time Systems
and Ada WOI'kShOp, 21-23 June 1988 MDA 903 84 C 0031
6. AUTHOR(S) A-134
James Baldo
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Institute for Defense Analyses REPORT NUMBER
1801 N. Beauregard St. IDA Memorandum Report M-540
Alexandria, VA 22311-1772
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10, SPONSORING/MONITORING
AGENCY REPORT NUMBER
STARS Joint Program Office
1400 Wilson Blvd.
Arlington, VA 22209-2308
11. SUPPLEMENTARY NOTES
12a, DISTRIBUTION/AVAILABILITY STATEMENT 12b, DISTRIBUTION CODE
Approved for public release, unlimited distribution; 27 August 2A
1990.

13, ABSTRACT (Maximum 200 words)

IDA Memorandum Report M-540, IDA and the Technical Cooperation Program Real-Time Systems and
Ada Workshop, 21-23 June 1988, documents the results of a workshop held in support of The Technical
Cooperation Program (TTCP) and the Office of the Deputy Under Secretary of Defense Research and
Advance Technology (ODUSD R&AT). Funding was provided by the STARS Joint Program Office.
The objectives were to (1) define requirements for using Ada in real-time systems, (2) iden;:y and
clarify known Ada real-time issues, (3) identify near-term and long-term solutions, and (4) provide
assessment and recommendations for future research directions. This proceedings documents the results

of each working group, summarizes the presentations, and presents the overall findings and
recommendations of the workshop.

14, SUBJECT TERMS 15. NUMBER OF PAGES
Ada Programming Language; Real-Time Systems; Timing Absiractions; 10

Kernels; Real-Time System Architectures; Run-Time Performances; Fault [16. PRICE CODE
Tolerance; Real-Time Scheduling Theory,

17. SECURITY CLASSIFICATION 18. SECURITY CLASS!FICATION 19. SECURITY CLASSIFICATION 120, LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACTY ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescrived by ANS] Sid, 239-18
296-102

IDA MEMORANDUM REPORT M-540

IDA AND THE TECHNICAL COOPERATION PROGRAM
REAL-TIME SYSTEMS AND Ada WORKSHOP,
21-27% JUNE 1988

James Baldo

June 1988

DA

INSTITUTE FOR DEFENSE ANALYSES

-Contract MDA 903-84 C 0031
‘DARPA Assignment-A-134

Accession For D

NTIS GRAXT "4
a
0

PTIC TAB
Unannounced
Justifioation o

By
.,?S",i‘gég Distribution/
1 Availability Codea

y Avail and/or
Contents Dist Special
hl \ t
I Executive Summary 1
II Working Group I 6
1 Timing Abstraction Issues 7

1.l OVervIew. . v v v o e e e e e e e e e e e e e e

1.2 Timing Abstractions Requirements 8
1.3 Discussion of Timing Abstractions Requirements 10
14 Researchlssues 13
1.5 Recommendations for Language Changes 13
IIT Working Group II 14
2 Real-time System Architectures 15
21 Overview. i e e e e 15
2.2 Ada Issues with Respect to Architectures 17
2.3 Recommendations. 19
IV Working Group III 21
3 Ada Run-time Kernels 22
3.1 Overview. e e e e e e e 22
32 Researchlssmes 23
3.3 Recommendations. 24
V Summary of Workshop Presentations 25
v

List of Tables

4.1 Concerns of Ada Community

Part 1

Executive Summary

Overview

On 21-23 June 1988, the Institute for Defense Analyses sponsored a real-time sys-
tems and Ada workshop. The workshop was held in support of The Technical Coop-
eration Program (TTCP) Technical Panel on Software Engineering XTP-2 and the
Office of the Deputy Under Secretary of Defense Research and Advance Technol-
ogy (ODUSD R&AT). The Software Technology for Adaptable, Reliable Systesm
(STARS) Joint Program Office provided the funding for both the workshop and
publication of this proceedings !.

The objectives of this workshop were to:

¢ define requirements for using Ada in real-time systems,
o identify and clarify known Ada real-time issues,
¢ identify near-term and long-term solutions, and

¢ provide assessment and recommendations for future research directions.

The defense community was concerned that the Ada prograinming language had
problems which were inhibiting or preventing its application to real-time systems.
These concerns were the underlying basis for this workshop, and as a result, the par-
ticipants spent time in identifying misperceptions and verifying valid Ada real-time
issues. A number of real-time researchers were deeply concerned by the indifference
of the Ada community to real-time issues that had been previously identified by
them [the researchers]. '

Attendees of this workshop were in general agreement that the Ada standard
provides many benefits for building real-time military systems. However, it should
also be noted that with any standard, a careful evolutionary path in which a stan-
dard changes by subsuming an earlier standard is necessary and critical for its
effectiveness.

The IDA/TTCP workshop was organized into morning and afternoon sessions.
Several workshop participants were asked to give presentations during the morning
sessi 1 on research and implementation topics relevant to Ada real-time systems.
The purpose of these presentations was to provide an exchange of technical infor-
mation and stimulate discussion of real-time issues.

The afternoon sessions provided time for three working groups to discuss real-
time Ada issues on a specific topic and to generate recommendations. Each group
presented an overview of their session, findings, and recommendations at the end of
each afternoon in plenary session. The three working group focused on issues with

'Prior to the IDA workshop on real-time Ada systems, two International Workshop on Real-Time
Ada Issues was held in Moretonhampstead, Devon, UK, sponsored by Ada UK in cooperation with
ACM SIGAda. A number of participants of these UK workshop were present and care was taken to
avoid redundancy.

respect to their titles: Ada time abstractions; Ada run-time kernel; and Real-time
system architecture issues.

This proceedings documents the results of each of the working groups, summa-
rizes the presentations, and presents the overall findings and recommendations of
the workshop.

Requirements for using Ada in Real-time Systems

Although Ada is still lacking in some areas for real-time systems, the workshop
attendees still support the language for applications ir this type environment. The

discussion below describes real-time requirements that need to be supported by
Ada.

The participants acknowledged that the requirement of real-time computing de-
pended on both the temporal and logical correctness of the system. The require-
ments of most embedded mission critical applications have stringent deadline-driven
timing constraints. These deadline-driven constraints have a major impact on the
hardware and software architecture of the real-time system.

The timing requirements of real-time defense systems can be quite complex.
A principle that is applied to handle logical complexity is to provide designers
and implementors with powerful abstraction mechanisms. In real-time systems,
however, this approach for handling time is not available. Generally low-level system
parameters are varied until the timing requirements are met. Usually, this is done
ad hoc, takes a considerable amount of time, and is extremely vulnerable to errors.
In order to manage the complexity of real-time systems, it is necessary to be able
to alstract the temporal aad logical correctness of the system. The capability to
specify a timing abstraction in Ada is necessary for implementing real-time systems.

Ada Language Real-time Issues

Ada language issues impacting real-time applications were summarized by the par-
ticipants of the workshop:

1. The capability to predict and guarantee hard-deadlines and detect missed
hard-deadlines is not provided in Ada. The priority inversion problem causes
timing to be unpredictable.

2. The capability to define a delay within a specified time bounds is not provided
in Ada. The uncertainty of the delay consts.ct makes 1t use in real-tirae
applications inappropriate.

3. The language forces values of type duration to be used as a parameter for
the delay statement. In general, this is an unsafe practice since calendar time

is non-monotonic owing to physical and sociological factors (e.g. daylight
savings time, leap seconds, etc.).

. The language does not provide a sufficient concept of a clock. Since the

majority of real-time systems have precise timing constraints, the language
should provide standard access to a set of clocks with a range of precision and
accuracy.

. The language does not provide a mechanism to model the underlying interrupt

mechanism of the target. This poses many problems since the language cannot
efficiently or effectively be utilized across various types of target interrupt
mechanisms.

. The Ada rendezvous (timed entry call) is ambiguous.

. The language mandatory support of the abort statement, conditional timed

entry calls, and the rendezvous are expensive operations and exist e’en if
the feature is not used. This means that information stored by the run-time
system and mechanisms to support these operations will be included in each
task. 2

Research Requirements

The workshop participants recommended the Department of Defense dramatically
increase its support in the following research areas:

A timing correctness analysis tool for Ada programs is needed that takes into
account environment attributes.

Real-time scheduling theory research should increased to support the pre-
dictability needed for complex systems of today and the future.

Research should be increased to support new mechanisms used to enhance
Ada run-time performance.

Support should be given to research investigating the passing of timing infor-
mation to the run-time kernel.

Research should be funded to develop a comprehensive understanding of target
architecture dependencies in relation to Ada run-time kernels that will impact
the performance and timing characteristics of applications.

Rescarch is needed to produce methods to quantif+ architecture dependencies
of the run-time system.

2For many military systems (e.g. missiles) the embedded target processors and memory, are
expendable. Every effort must be made to minimize target processor resources required, thus mini-
mizing costs.

o Research should be continued to investigate the impact that a distributed
system has on runtime algorithms and communications mechanisms.

o An increasc in research funding is needed to support fault-tolerance applica-
tions in distributed real-time Ada systems.

2EACCAM YR S S

Part 11

-
P
]
Q
i

@)
(o1

.m

5
S~

2

Chapter 1

Timing Abstraction Issues

1.1 Overview

The init" ' objectives of Working Group I, Ada Time Abstraction, were to discuss
requirements for specifying time and language constructs necessary to implement
timing requirements. Working Group I agreed that was essential to define a con-
cise and terse set of basic timing requirements for real-time systems and review
mechanisms that could be used in the short term to facilitate resolution of timing
implementation problems.

Next, they determined if these basic requirements were supported by the Ada
language. If not, the group then suggested solutions that were categorized as either
short or long term. Specific recomendations for changes to the Ada language were
also identified and are found at the end of this chapter.

The rationale for short term recommendations was to minimize the number of
language changes. For the short term, m-.chanisms (possibly in combination) like
the ARTEWG (Ada Runtime Environment Working Group) Run-time Standard
Interface and guidelines (e.g., static tasks, non-usage of abort construct, etc.) could
be used to enable the use of Ada in some real-time application domains. Long-term
recommendations may require research to find possible solutions.

With respect to timing issues, the group separated the issues into those of non-
predictability and overhead. The following paragraphs identify and briefly discuss
each issue.

The group was concerned that the capability to predict and guarantee hard-
deadlines and detect missed hard-deadlines is an essential feature of any real-time
programming language. Due to the priority inversion problem in Ada, timing is not
predictable.

The delay construct semantics are defined such that a task will be delayed greater
than or equal to a specified time. The uncertainty of the delay construct makes it
use in real-time applications inappropriate.

The current package CALENDAR is misleading and potentially dangerous. It
implies that durations are computable by subtracting absolute time of day. In
general this is an unsafe practice, since calendar time is non-monotonic, owing to
physical and sociological factors (daylight savings time, leap seconds).

There is no alternative for computing the argument to delay for periodic schedul-
ing without using CLOCK. Also, there is no way of finding the true elapsed time
between two points without subtracting CLOCK readings (which could lead to such

anomalies as negative delays). It is crucial that two types of clock recognized by
Ada:

a. One type of clock which is synchronized with the normal view of calendar time
(implying re-synchronization and hence non-monotonic).

b. A second type which is monotonically increasing clock for periodic calculations.

An alternative considered would be to replace CALENDAR with a lower level
interface to attach various user time packages.

Efficiency of the Ada tasking model raised several questions. The abort state-
ment and conditional timed entry calls must be supported. The mechanism(s) to
support these language feature are expensive and always exist, even if the con-
structs are not used in the application. Information stored by the run-time system
and mechanisms to support these operations will be included in each task.

The rendezvous is also an expensive operetion that adds to the overhead of a
task. An Ada task that did not contain a rendezvous would still be penalized with
respect to performance based on the built in support for the feature.

An additional recommendation was made by the Group that Ada vendors should
support the interfaces as described in the document, A Catalog of Interface Features
and Options for the Ada Runiime Environment. The Catalog was produced by the
ARTEWG Interfaces Subgroup.

1.2 Timing Abstractions Requirements

The group agreed on the first day that a definition for 'event’ was needed since the
term was to be used consistently throughout the basic requirements. The following
definition for event was adopted by the group:

1. Informal definition of ’event’

a. Relates to an effect in the external environment (e.g., a voltage appearing
on a terminal)

b. A point in the execution of an Ada program (e.g., an entry to a select);

- examples are:

(1) Interrupts
(a) External
(b) Timer
(2) Certain statement executions
(8) Delay expiration
(4) Synchronization points

Working Group I derived a set of basic Ada time abstraction requirements which
are listed below:

1.

-C!!

Need to be able to bound time.

a. There are two requirements for bounding time:

(1) Need to bound the elapsed time between events to confirm applica-
tio.r requirements.

(2) Need to bound the execution time of a section of Ada code to assist
in scheduling and to detect task overrun.

Need to be able to define periodic events.
Need a mechanism to handle failures in 1 and 2.

Need to provide a mechanism for an application to be able to specify timing
behavior (e.g., overload, starvation) or task scheduling policy.

Need a model of time to separate concerns of:

a. Common Clocks (subject to adjustment)

b. Real-time clocks (monotonic)

Need an absolute delay time.

. Need for immediate asynchronous change in control flow.

Need to provide delay statement accuracy:

a. Need to be able to specify the application requirement.

b. Need to be able to determine the accuracy actually provided.

Need to eliminate overhead support for abort and timed entry call, since this
will have an impact on asynchronous change in control flow (assume language
supports this capability). Given immediate asynchronous change in control
flow, it is critical for real-time applications that no overhead be paid for abort
and timed entry call.

10

1.3 Discussion of Timing Abstractions Require-
ments

Group I agreed that suggestions for changes to the Ada language reference manual
should be treated with caution. This agreement was based on the view that any
change should be ba ked by evidence that the language modification is correct and
needed. Prototyping of the cuange, which is expensive and a long term effort,
would be required. Based on this proposed rationale, the group attempted to avoid
language changes where possible.

The requirements, research, and language sections were based on the above ra-
tionale. It should be noted that many of the short-term solutions (based on adoption
of proposed ARTEWG solutions) were selected to provide immediate solutions to
current problems.

The following is a summary of the discussions that lead to previous requirements
generated by Group L.

1. Bounding of time - The requirements of real-time systems to respond to an
event within a prescribed time is essential. Due to changing system loads,
the response time for an event may vary. For example, a real-time system
is designed around a uniprocessor to service external events from a specified
environment. The arrival of several events at the same time could delay the
service of an event long enough to cause system failure.

The Ada language does not provide a mechanism for the implementor to
describe the system response time. Instead, the Ada code must be structured
and tested for each system implementation. This results in code that is not
highly portable and is very implementation dependent.

It is also highly desirable to have a language mechanism to express the amount
of time that a certain segment of code can execute. Currently, two problems
exist in Ada that make this mechanism difficult to implement. Since ceveral
task can be concurrently ready to run or executing (multiprocessor system), a
task in a bounded segment of code could be swapped for execution by another
task or blocked by a rendezvous. Another problem is that different compilers
produce different sizes of target code for the same target. Also, the same code
segment has varying execution times across different targets.

It should be noted, the timing correctness for a real-time system is of equal
importance as its functional correctness. The ability to specify and verify tim-
ing is critical. However, most real-time systems are designed and implemented
using ad hoc methods.

Timing specifications would have to be added to the language to incorporate
the timing mechanisms discussed. The majority of the group expressed the
opinion that more research is needed in timing specifications and decided that
this issue was a long-term goal.

LA S TRWORN L_._k.“. 1ol

[T WY

11

2. Periodic events - There are many real-time applications that require cyclic
service. Ada does not provide an accurate mechanism to schedule a periodic
event. Although the mechanism could be implemented on top of an Ada
run-time system, its widespread use should require its support in Ada.

The majority of the group did not support a language change for specific
language constructs that support periodic events. Instead, the mechanism
may be realized by using services provided by the run-time system. This could
be provided in a uniform manner by using the run-time interface specified
by the ARTEWG’s A Catalog of Interface Features and Options for the Ada

Runtime Environment.

3. Detection of timing faults - If the timing requirements in 1 and 2. are not
satisfied, an exception should be generated by the system. This is based on
the knowledge that many real-time systems can have catastrophic results in
the event of a system failure. The ability to detect or recover from a timing
fault is essential.

4. Timing behavior and task scheduling specification - The problem of priority
inversion currently inhibits the language from being used in a number of real-
time application domains. Current Ada schedulers may prevent starvation;
however, this does not work well in real-time systems with respect to meeting
deadlines.

Scheduling algorithms, such as the stabilized rate monotonic algorithm, which
can meet system deadlines up to 70 percent processor utilization, cannot be
used in Ada due to the priority inversion problem. To correct the priority
inversion problem in Ada implies a change in the language.

A potential solution to this problem was presented in the Goodenough and
Sha paper at the 2nd International Workshop on Real-Time Ada Issues, May
1988, entitled "The Priority Ceiling Protocol: A Method for Minimizing the
Blocking of High Priority Ada Tasks.’ Their approach uses the priority inheri-
tance protocol and the priority ceiling protocol. The combination of these two
protocols minimizes the blocking of a high priority task by a lower priority
task to at most once.

An implementation of the above system currently is being tested at the Soft-
ware Engineering Institute (SEI). The majority of the working group favored
this approach as it could provide a short term solution for the application of
Ada to several real-time domains.

5. Clocks - The need for a real-time clock is essential for most real-time systems.
Although access to a real-time clock can be implemented in an ad hoc way for
each system designed, it would be more useful to provide a standard interface.
To avoid a language change, the group decided that ARTEWG Run-time
Interface could provide the appropriate access.

12

6. Absolute delay - The language does not support an accurate delay, it only

guarantees a delay equal or greater to the specified time. Since the ARTEWG
Run-time Interface provides a bounded delay, the group suggested that this
approach could be used as a short term solution.

. Asynchronous control - In real-time systerns it is frequently necessary for a task
to asynchronously transfer control to another task. The Ada language provides
the abort and rendezvous mechanisms for transfer of control. However, these
mechanisms are inappropriate for asynchronous control. For example, if an
event occurs that requires a task to stop executing, it may be unacceptable
to wait for the task to reach the next rendezvous before halting. Also, these
mechanisms unfortunately are costly and, therefore, difficult to use in real-
time systems.

The abort is expensive and requires all the supporting mechanisms even if the
implementation does not use the construct. Due to the overhead associated
with the abort, it is unlikely that it can provide the response time needed in
most real-time applications.

The rendezvous cannot guarantee the immediacy required by many real-time
systems since the task would have to poll, which is extremely inefficient. Sev-
eral suggestions with respect to mechanisms and language constructs have re-
cently appeared in the literature on asynchronous control in Ada. The group
agreed that further research is needed before a recommendation can be made.

. Delay statement - The group agreed that the present semantics of the delay
construct in general was not very useful for real-time applications. It was
decided that the group would define the necessary attributes that the delay
construct should support for real-time applications.

The specification of the time delay can have a wide range of magnitudes (e.g.,
days to micro seconds). The delay statement must be able to support & range
of timing that is at least representative of a broad spectrum of defense systems.
Also, a user must be able to determine (or possibly specify) the accuracy of
the delay (when will it occur).

Since the above recommendations would require language changes, the ma-
jority of the group agreed that the ARTEWG Run-time Interface, bounded-
delays, would be an acceptable short-term solution.

. Abort and timed entry call task overhead - The abort and time entry call
mechanisms are required and cannot be separated from tasks. Ada real-time
implementations should not have to use these constructs. The group suggested
that a 'light-weight task’ be made available to implementors that does have
the abort and time entry call overhead. A short-term solution would be to
supply a task of this type through the run-time interface (ARTEWG Run-
time Interface). The principle is to move high cost tasking functions into the
application domain.

e

PTIRT RN

13

1.4 Research Issues

Working Group I discussed severa. areas of research that are needed to provide
solutions, improved performance, and correctness with respeci to the basic tim-
ing requirements that the group generated. Following is a brief description of the
suggested research areas.

The problems of specifying and implementing the specifications of time is not
trival. Continuing research in the area of timing specifications and verification is
essential. A program timing correctness analysis tool that can take into account
environment attributes (e.g., such as processor instruction and context switch times)
should be a high priority research item

Real-time scheduling theory research is necessary to support the predictability
needed for complex systems of today and the future. Real-time testbeds will be
necessary to demonstrate that the scheduling theory is adequate for application to
defense systems.

Real-time distributed scheduling theory research will be essential for the ma-
jority of the next generation of real-time systems. Timing issues with respect to
distributed Ada systems are quite different from those based on a single processor
system.

1.5 Recommendations for Language Changes

There was a general agreement about what should be included as recommendations
for language changes to the Ada 9X process. The group proposed two recommen-
dations for consideration:

¢ Consistent treatment of priorities in all resource allocation decisions.

¢ Development of a mechanism for an application run-time interface to provide
a scheduler (similar to ’light-weight tasking’).

Part 111

Wérking Group 11

14

Chapter 2

Real-time System Architectures

2.1 Overview

The initial objectives of Working Group II w.re to identify and understand the
issues of Ada and system architectures for real-time systems (RTS). The group
defined two areas of consideration:

1. considerations for designing solutions for RTS; and
2. considerations for implementation of those designs including:

a. the Ada programming language,
b. the evolving nat e of RTS, and

c. the current execution environments.

The group decided that they would restrict their issues, requirements, and rec-
ommendations to specific classes of systems. Systems can be categorized accerding
to three characteristics: concurrent, distributed, and real-time. These characteris-
tics are then used to qualify the following classes of systems:

=

. sequential,
concurrent,
real-time concurrent,

distributed, and

A S

real-time distributed.
Working Group II focused on real-time concurrent and real-time distributed
systems. Real-time systems are generally large and complex. In considering archi-

tectural issues, choices that tend not to support large address spaces, concurrent

15

16

operations (i.e., low process-switching overhead), or priority-based scheduling are
likely to be less cost-effective for development of these systems than choices offering
relatively more support.

The group discussed the impact of system architecture on performance. It was
ag-eed that acceptable performance is likely to result only when a given architecture
does not extract an undue penalty for representing concurrency and interprocess
communications (IPC) according to the model that is assumed by the software
system.

Ada provides a default process model (the Ada tasking model) and a default
interprocess communications model (i.e., synchronization and data transmission by
rendezvous). If a program assumes these defaults and the architecture penalizes
their use, then unacceptable performance will result. This has been observed in a
current standard military processor. This processor’s architecture extracts a heavy
penalty for task context switching (large overhead for stack copying).

The group agreed that before Ada can be applied to real-time distributed sys-
tems, issues such as communication between processes, the use and protection of
shared variables, and timing must be resolved. There was also concern that Ada
may not adequately support the process of partitioning a real-time distributed sys-
tem across a set of processors.

The group derived four forms of architectural improvements that could be ap-
plied to real-time concurrent and distributed systems:

1. Logic improvements - Such improvements (e.g., smaller gate delays) lead tc
improved performance across the entire range of programming paradigms.

2. Concurrent system specific - Such improvements are ones that improve perfor-
mance over the entire class of programs using a concurrent control paradigm.
For example, any concurrent application benefits from the addition of register
resources to reduce switching times as long as the combined language support
environment manages these resources in a reasonable way.

3. Application specific - such improvements improve performance over a limited
a range of applications. For example, bit flippers for Fast Fourier Tranfers or
multiple Arithmetic Logical Units for coordinate transformers use hardware in
a way the accelerates a single class of applications. There is some question as
to how such hardware is utilized by the Ada compiler in a modular, portable
way.

1. Real-time Ada specific - this type of improvement accelerates those real-time
programs that are written Ada. Clearly, there is some overlap between this
category and the others. For example, extra register sets as a real-time-Ada-
specific improvement as well as a concurrent-system-specific improvement.
Tag matching and bounds comparing facilities are similar.

."T"T""\"ww

CauN i

17

The group also identified that the standardization of Instruction Set Architec-
tnres (ICA) has had a negative effect on the use of Ada in real-time systems. The
majority of the group agreed that standardized IS/s have not led to standardized
hardware, anr’ 32-bit processors seem *o ke more cost-effective than 16-bit proces-
$OTS.

With respect to the environment of the run-time system, two important points
surfaced regarding the low-level environment supported by the processor. First,
careful attention should be paid to the protection of system resources by supervisory
or privileged states. In modern practice (e.g., High Level Languages) and real-time
systems, the concept of self virtualizing architectures does not seem as important.
Second, considerably more attention needs to be paid to try to match the interrupt
structure of the machine to the scheduling model of the task dispatcher in the
run-time system.

2.2 Ada Issues with Respect to Architectures

The working group was concerned that since the majority of real-time systems have
precise timing constraints, the language should provide standard access to a set of
clocks with a range of precision and accuracy. It was agreed that Ada provides an
insufficient concept of a clock.

Due to target architecture dependencies, Ada run-time kernels will impact the
performance and timing characteristics of applications. A better understanding of
these dependencies is needed. Methods to quantify architecture dependencies of the
run-time system are also needed.

The Ada language provides no mechanism to model the underlying interrupt
mechanism of the target. This poses many problems since the language cannot
efficiently or effectively be utilized across various types of target interrupt mecha-

nisms. The group suggested that there should at least be a mechanism to disable
interrupts as needed.

For distributed real-time systems, the issues are complex and not well under-
stood. It was acknowledged that there was a need to insert a mechanism for edu-
cation for designers and implementors involved with distributed real-time systems.

The issue of how the run-time algorithms and communications change when the
system is distributed was discussed briefly. The group agreed that control of the
algorithm over the connections is desired. This control may be either implicit or
exg! :it. Two Ada issues were brought up as well: What support is found in Ada for
the timing of rendezvous? How can the distributed processes degrade gracefully?

Currently, the Ada rendezvous (timed entry call) is ambiguous. This is par-
ticularly a problem for distributed processing. The major problem with the Ada
rendezvous in a real-time distributed system is the difficulty in predicting time for
its completion. However, this does not preclude using a multiprogram version.

18

The conclusion of this part of the discussion was that Ada imposes stringent
constraints cn the hardware selection/design. The group agreed that distributed
support is important, but then split over the issue of whether the support for dis-
tribution should be provided in Ada (it currently lacks adequate support) or should
be handled by the run-time environment. Some members of the group felt that the
notion of distribution should be understood at the Ada level. That is, within the
Ada model distributed communication must be facilitated.

However, before it will be feasible to do distributed real-time processing, some
issues will have to be resolved. Specifically, an efficient means of communication
between processes, the use and protection of shared variables and other information,
and timing are areas of concern.

The group briefly discussed several mechanisms to handle processor failure and
process migration or termination and propagation of status. A number of interesting
questions were raised and the group concluded that more discussion is needed.

On the subject of performance of distributed Ada real-time systems, the group
agreed that the major factor influencing the cost is the support required to handle
the Ada semantics (for instance, for a context switch).

The group concluded that a rendezvous across a network using the ISO (Inter-
national Standards Organization) protocols is extremely inefficient.

The notion of distribution imposes some assumptions on what is considered
acceptable performance. The question of what happens increase the distance of
distribution is increased and mode of intercoanect is raised. Should a typical dis-
tribution and a very distant distribution look the same to an Ada rendezvous? Are
the semantics the same? Does the application need to know the nature of the
distribution? If so maybe the entire problem domain should be described in Ada?

The issue for discussion became what is the scope of the Ada standard? Is it
necessary, or desirable, to replacc he Ada tasking miodel for some situations? Given
the example of a distributed system and a rendezvous between a ground station and
a satellite, the delay is very long. Is this an Ada problem or is it a problem in the
system design? Would it be advantageous not to use a rendezvous? Maybe the
rendezvous is appropriate for only certain applications. The members of the group
disagreed on this noint. Some argued that you should only use the features of the
language where it it appropriate, while others argued that since the rendezvous was
included in the language, it was the appropriate solution to all problems. The group
also disagreed on whether using some other mechanism for communi. ation would
be a violation of the Ada language. Would the use of some other communication
mechanism decrease portabilitv and maintainability?

To understand what an appropriate architecture for Ada real-time systems might
be, it is important to understand the impact of Ada on an ISA. That is, the entire
system must be considered. Two potential areas of a language that may impact the
ISA significantly are scheduling and exception generation.

Addressing the language specific architecture issues, what is specific or unique

19

to Ada? Since the features of Ada may impact the nature of the architecture, these
features must be considered. Members of the group acknowledged that there is
probably nothing in Ada that does not appear in a combination of other languages.
So what are the characteristics of Ada programs? The fundamental characteristics
of Ada programs include for example, large size and complex implementation.

Given these characteristics, the group agreed that it is probably insufficient to
look to a uniprocessor system for support for the realtime, Ada systems of the
future. A multiprocessor architecture would be required. However, each processor
in the configuration may be optimized. The discussion turned to the question
of scheduling optimization. At what level of granularity (task, procedure or Ada
program) would it be desirable or feasible to map to the processors? There was no
general agreement on this point.

2.3 Recommendations

Working Group II provided the following recommendations:

1. System issues should not be solved with just software. That is, do not push
system design decisions off on the language.

o

Current 16-bit hardware use should be scrutinized in DoD applications, as it
is unsuitable for large concurrent Ada applications. These 16-bit architectures
could be used, however, at great effort and cost. There is a need to re-evaluate
the way hardware is procured and standardized.

3. Standard access to clocks supplying a range of precision and accuracy should
be provided.

4. Hardware support for the Ada rendezvous, particularly for distributed sys-
tems, should be provided.

5. Architectual features suggested below to improve Ada performance should be
considered in DoD applications.

¢ Internal registers to be managed by the ISA and

o Large register sets, hidden or exposed to the ISA depending on the ap-
plication.

Recommendation one generated an interesting question for the group to consider.
Does the language drive the usage? Or does the usage drive the language? Everyone
agreed that the language should support the usage, but that the language strongly
influences what and how you do things.

The group expressed concerns about recommendation two for real-time dis-
tributed systems, with respect to support of timing and performance requirements

20

of these systems. Although many systems may be required to used these 16-bit
processors in a distributed application, it is not clear how Ada or any high level
language can efficiently support real-time distributed applications with these archi-
tectures in any domain.

L Q‘_‘muy e

LM.L.‘.‘..!LL“ b IX)

mh.a T ekt

Part TV

Working Group III

23

cation domains and built to a set of standard interfaces, would greatly reduce cost
and time of reconfigurable Ada run-time kernels.

It was recognized that architecture support for the Ada run-time kernel could
greatly enhance performance. The working group indicated that there was a need
to exploit possible optimizations.

With increased interest in the use of standards by the defense community, the
impact of such standards on the Ada run-time kernel needs to be examined. Accep-
tance of these standards for use in defense systems can greatly influence the design
and effect the performance of the run-time kernel. The group would like to see
liaison channels established between standards organizations that are responsible
for standards such as communication protocols and distributed data bases.

The group was concerned that the real-time research community was failing to
produce input into the Ada insertion and technology process. It was suggested that
organizations such as the TTCP and the SIGAda ARTEWG play an active role in
these processes. Also, prototyping potential language changes being considered by
the Ada 9X was strongly recommended.

Education is a major issue. There is a need to influence the university commu-
nity to actively pursue a number of education issues related to real-time systems.
Although, many current real-time systems have been successfully designed and im-
plemented by ad hoc methods that have utilized techniques from existing research
areas, 2 a scientific foundation is needed to support real-time systems. This requires
more research and researchers that are uniquely devoted to real-time systems.

Universities need to provide students with skills (course work and laboratory
work) that give them a better understanding and capabilities of the issues and
engineering principles of designing and implementing real-time systems. It was
suggested that Ada lab materials, such as compilers, run-time systems, debuggers,
and actual systems for experiments, be made available.

3.2 Research Issues

Working Group III concluded that the current set of criteria and resulting bench-
marks and test suites used to evaluate run-time systems is inadequate. An evalua-
tion (criteria including test suites) is needed that includes a view of the applications
requirements. An investigation to extend the current set of criteria or research to
provide new criteria is required.

The need to convey timing information to the run-time systems was also dis-
cussed, since there are number of possible approaches. A study is needed to identify
a reasonable solution for real-time Ada systems.

2For more detail on this issue, see the report by John A. Stankovic: Real-Time Computing
Systems: The Next Generation, Tech. Report TR-88-06, COINS, Dept., Univ. of Massachusetts,
Jan. 1988

24

Optimizing or improving run-time performance can be accomplished by chang-
ing several environment conditions. Such as stylized use of the Ada language or
customizing run-time kernels for a specific target environment. Working Group
IIT has determined that more research is needed to investigate factors and new
mechanisms that can be used to enhance run-time performance.

3.3 Recommendations

Working Group III provided the following recommendations:

1.

Give guidance in applying Ada to significant aspects of current real-time ap-
plications (guidebook for using Ada in real-time applications). This should
be accomplished by The Software Engineering Institute in its real-time Ada
activities.

Include the development of real-time systems in Ada trainingthrough courses
and subsidies for real-time Ada lab materials. This should be accomplished
within a framework of software engineering and real-time system development.

. Provide operating systems researchers with challenging real-time problems and

greater research emphasis on dead-line driven distributed systems in Ada.

Direct real-time application experts to actively contribute and participate in
the Ada 9X process. Of particular interest are dead-line driven distributed
systems for validation of Ada 9X design. Make sure that the experts are
representative of the international Ada community and involved with real-
time mission-critical embedded military systems (TTCP could help facilitate
this action).

. Prototype changes that are being considered by the Ada 9X group.

Utilize university research to solve issues and develop new technology for run-
time systems, which can be provided to vendors in reducing the risks in build-
ing and improving the capabilities of their products.

Part V

Sum:nary of Workshop
Presentations

Chapter 4

Presentations

4.1 The Fundamental Challenges of Deadline-
Driven Computing

Dr. Andre van Tilborg from the Office of Naval Research (ONR) presented an
overview of issues challenging real-time systems designers and implementors. The
major issue that is causing the most difficulty with real-time systems is complexity.
This complexity is a manifestation of increasing functional and timing requirements
of present and future defense systems.

The realization of any real-time system depends on the correctness of the logical
result of the computations and the time at which the results are produced. The
difficulty in attaining the above correctness is exacerbated by the real-time system
environment. In general these systems do not permit human interaction and must
respond to events on a time scale too short for interaction. Overall, real-time
computer systems must be predictable.

The current technology available to design and implement real-time systems is
limited. Most systems are realized in an ad hoc manner. Real-time systems are
very difficult to understand, analyze, and modify, due to a lack of any scientific
theory to cope with real-time issues.

The introduction of time greatly increases the difficulty of developing a suitable

theory. Typically, timing requirements are satisfied by building a prototype in the
lab:

1. trying different priority assignments,

2. altering the binding between code segments and time slots in cyclical execu-
tives, and

3. rewriting segments of code.
It should be noted that timing variances from prototypes to actual systems can

26

27

cause severe problems in development. This same problem is also evident in system
modification (minor changes to the system can cause major impacts in timing).

The author summarized the current shortfalls in developing real-time systems:

e no coherent theoretical scientific model to support real-time system develop-
ment,

e no ability to write testable requirements and designs involving time and reli-
ability constraints,

¢ no comimon benchmarks or synthetic workloads, -

o very limited understanding of resource management algorithms involving real-
time constraints,

e very limited programming language constructs and run- time systems for real-
time applications,

e very limited understanding of real-time constraints in distributed systems and
communications, and

o very limited techniques for performance prediction and non-invasive instru-
mentation of real-time systems.

The ONR is funding a five-year initiative to establish the foundations of a science
of real-time computing and derive integrated real-time computing systems method-
ology that combines theory with software tools. Its research agenda is focused
on providing an approach to building real-time systems based on the timing and
reliability behaviors of the system.

To accomplish these goals, the program has been structured to investigate and
establish valid approaches for comprehensive testable formalisms for the representa-
tion and manipulation of time in specification, design, implementation, and testing
of real-time computing systems. Another thrust of the initiative is to develop robust
real-time scheduling algorithms with predictable/guaranteed performance, and to

devise a real-time computing systems theory for distributed and parallel computing
systems,

The initiative will begin in fiscal year 1989, with first year efforts concentrated
on the start up. A schedule and milestones are listed at the end of this summary.
ONR is confident that it is feasible to devise a strong theory of real-time scheduling
for uniprocessor systems within the . .xt few years. However, scheduling theory for
parallel and distributed systems is much more difficult and will not be available in
the short-term.

4.1.1 ONR Real-time Initiative Major Milestones
o FY84-FY88

28

— Core contracts in codes 1133 and 1211 establish basis for Accelerated
Research Initiative.

¢ Y89

~ Establish real-time computing research efforts and laboratory;
— Start basic efforts in specification and scheduling;
— Bring together labs, syscoms, basic researchers to achieve closure;

— Complete formal investigation of Navy current and projected real-time
requirements and define experiments.

¢ FY90

— Transition preliminary theoretical results to real-time lab;
— Complete synthetic workloads;
— Define canonical problems;

— Complete solid theory for non-stochastic task arrivals in uniprocessors;
and

— Complete design of prototype scheduling and specification software tools.

29

4.2 Real-Time Avionics Software Requirements
High-Level Overview

Douglass Locke of IBM Systems Integration Division presented an overview of a
typical avionics system and issues of using Ada in avionics. A diagram was shown
illustrating a set of typical avionic subsystems:

e navigation

e mission planning

¢ communications control
e weapon deployment

® Sensor processing

e pilot/crew interface

e ballistics computation
s image processing

o speech recognition/synthesis.

Each of the above subsystems vary in complexity that is unique to a specific plane
and mission. :

The requirements of typical real-time avionics response times were listed: navi-
gation - 20hz; display functions - 100ms ; and sensor control - 10hz to 1Khz. These
response times set the deadlines of the system. The ability to design a system that
can adequately handle these response times as well as meet weight, power, and heat
requirements of the system is critical.

Typical avionics software requirements include the following;:
o Software correctness must include response time.

o Software reliability is frequently critical to safety.

e Software response must be predictable.

e Software for most avionics systems is designed to handie periodic events.
Avionics application software must execute in environments that provide vverall
support for the above requirements.

It is essential that services provided by the underlying system that the applica-
tion uses must have low bounded response times. For instance processor scheduling

30

and memory allocation and deallocation must be very efficient. Therefore the de-
sign of application software is dependent upon the performance of these underlying
support mechanisms.

Since the application software must be predictable in order to meet system
deadlines, the underlying support services used by the application must also be
predictable. Therefore services such as file systems and paged storage must be
avoided.

There are two typical overall design strategies used for avionics software: time-
line sequence and fixed priority multi-tasking (with or without preemnption). A time-
line sequence can be briefly described as dividing a time domain into a repeating
series of time slots. The execution time of an application can be partitioned into
slots. High rate function get multiple slots and each function must finish within its
slot. The resulting scheduling sequence is completely deterministic.

Fixed priority multi-tasking gives each task a fixed priority (e.g., may be mod-
ified for mode changes). The task with the highest priority is always executed. If
preemption is not used, then CPU utilization by each task is limited to protect
latency requirements for high priority tasks.

Ada is currently being used in Avionics applications. However, several restric-
tions are placed on its use. Sincc the above designs avoid synchronization, Ada
tasking is not used (rendezvous not needed). Ada access types are not used due to
overhead associated with elaboration, allocation and deallocation of objects. The
overall software composition consist of Ada procedures that are scheduled by an
avionics specific executive.

Using Ada in avionics applications raises several issues. The Ada rendezvous
is the only means of communication between tasks (shared variables can be used,
however, but are not recommended). Communications between Ada tasks using
the rendezvous causes a timing problem with tasks that have hard deadlines. As
the rendezvous is synchronous, many real-time applications need an asynchronous
mechanism of communication.

The user lacks control over the time domain in Ada. For, example the delay
statement cannot guarantee a response to an event witl.in a specified time bounds.

Distributing an Ada program across several processors still poses a number of
problems. Communication is the most obvious problem. Distributed system can
provide redundancy that can be used to make a system fault-tolerant. However, it
is not clear how this redundancy can be utilized via mechanisms within the Ada
language.

|

o |

it Al 18) o L

ot e A s b X UL b i

31

4.3 Real-Time Scheduling Theory and Ada

Dr. Lui Sha of the Software Engineering Institute (SEI) gave a presentation on
real-time scheduling theory and its implications to the Ada tasking model. The
scheduling theory reported by Dr. Sha was sponsored by ONR. Recognizing the
importance of putting the engineering of large scale real-time system on a firm
scientific foundation, ONR recently launched a five-year Real-time Systems Initiative
to rally computer scientists to build a scientific foundation for distributed real-time
systems. The objective of Dr. Sha’s talk was to illustrate the importance of using

an analytical approach for the design and implementation of real-time system in
Ada.

Traditionally, many real-time systems use cyclical executives to schedule con-
current threads of execution. Under this approach, a programmer lays out the ex-
ecution timeline by hand to serialize the execution of critical sections and to meet
task deadlines. While such an approach is adequate for simple systems, it quickly
becomes unmanageable for large systems. It is a painful process to iteratively divide
high-level language code so the compiled machine code segments can be fitted into
time slots of a cyclical executive and that critical sections of different tasks do not
interleave. Forcing programmers to schedule tasks by fitting machine code slices on
a timeline is no better than the outdated approach of managing memory by manual
memory overlay. Such an approach often destroys program structure and results in
real-time programs that are difficult to understand and maintain.

The Ada tasking model represents a fundamental departure from the cyclical
executive model. Indeed, the dynamic preemption of tasks at runtime generates
non-deterministic timelines that are at odds with the very idea of the fixed execution
timeline required by a cyclical executive. I-om the viewpoint of real-time scheduling
theory, an Ada task represents a concurrent unit for scheduling. As long as the
real-time scheduling algorithms are supported by the Ada runtime and the resource
utilization bounds on CPU, I/O drivers, and communication media are observed,
the timing constraints will be guaranteed. Even if there is a transient overload,
a fixed subset of critical tasks can still meet their deadlines as long as they are
schedulable by themselves. In other words, the integration of Ada tasking with
analytical scheduling algorithms allows programmers to meet timing constraints by
managing resource requirements and relative task importance. This will make Ada
tasking truly useful for real-time applications while also making real-time systems
easier to develop and maintain.

Although Ada tasks fit well with the theory at the conceptual level, Ada and
the theory differ on the rules for determining when a task is eligible to run and
its execution priority. The Ada language rules are inconsistent with respect to the
enforce of a prioritized scheduling discipline:

e selective wait: priorities can be ignored;

¢ entry queue: FIFO, priority must be ignored,;

32

e called task priority: only increased in rendezvous;
¢ hardware interrupts: always highest priority; and

e CPU allocation: priorities strictly observed.

Such inconsistency may lead to serious problems. For example, if a high priority
task calls a lower priority task that is in rendezvous with another low priority task,
the rendezvous continues at the priority of the task being served instead of being
increased because a high priority task is waiting. Under these circumstances, the
high priority task can be blocked as long as there are medium priority jobs able to
run.

But there ate a variety of workarounds. The most general solution within the
constraints of the language is simply to not use pragma PRIORITY at all. If all tasks
in a system have no assigned priority, then the scheculer is free to use any convenient
algorithm for decidir.z which eligible task to run. An implementation-dependent
pragma could be uscd o0 give “scheduling priorities” to tasks, i.e., indications of
scheduling importanc. that would be used in accordance with analytic scheduling
algorithms. This approach would even allow “priorities” to be changed dynamically
by the programmer, since such changes only affect the scheduling of tasks that, in a
legalistic sens2, have no Ada priorities at all. The only problem with this approach
is that task: are still queued in FIFO order rather than by priority. However,
this problem can often be solved by using a coding style that prevents queues
from having more than onc iask, making the FIFO issue irrelevant. Of course,
telling programmers to assigi. “scheduling priorities” to tasks but not to use pragma
PRIORITY, and being careful to avoid queueing tasks surely says we are fighting
the language rather than taking advantage of it.

While the Ada tasking model can and should be improved, the workarounds
permit the implementation of analytical scheduling algorithm within the existing
framework of Ada rules. This subject is discussed in detail in a SEI technical
report, Real-Time Scheduling Theory and Ada by Lui Sha and John Goodenough.
Given that the analytical approach appears to offer significant improvement in Ada
based real-time software engineering, \1¢ Real-Time Scheduling in Ada project at
SEI cooperates with industry and DoD agencies to perform a series of case studies,
which include:

¢ missile application (NWC),

s avionic application (IBM SID (Owego) and NWC), and

¢ submarine application (IBM SID (Manassas) and NUSC).

These case studies are not being performed just by SEI. In general, the project’s
approach is to have potential application developers and DoD agencies to develop

the case studies with SEI's assistance. The goal of the studies is to show that the
analytical approach has the following capabilities:

t.. ‘AJ.M_JL;_J.ym_ _J._v.:u,._g_._r‘. Ca a2 _'_..,.M...___-aum

B RTIR RE R Y

S

33

can be used in a realistic way;

does not significantly increase the development risk of initial projects that
choose to use the approach;

has a positive payoff during the design and development stage of a project; (it
isn’t enough to argue that the main benefits are achieved in the maintenance
phase);

minimizes the amount of retraining needed to use the approach ef‘ectively;
15 supported by compiler vendors; and

is supported with tools that make it easier to apply the theory in practice.

34

4.4 Real-time Distributed Ada

Anthony Garagaro of Computer Sciences Corporation substituted for Dr. Richard
Volz of Texas A&M University in giving a presentation on Real-time Distributed
Ada. This presentation introduced language issues in distributing execution of Ada
programs and identify areas where research and development are needed.

Recently there has been increased interest in distributed program execution in
the Ada community. A large number of the participants at last meeting of the
International Workshop on Real-Time Ada Issues agreed that distributed program
execution is an important issue. This was in contrast to the first meeting in 1987.

The next generation of real-time systems will be more comp.ex due to their dis-
tributed nature. In designing and implementing software in Ada for a distributed
systems, a general understanding of how the language supports distributed pro-
grams is useful. Distributed systems have additional characteristics in which the
language needs to support a mechanism for expression. For instance, knowledge of
distribution characteristics (access time) is important to algorithm developinent.

There should be one language definition to which both distributed and non-
distributed systems adhere. It should provide whatever is necessary to express well
defined distributed execution semantics.

If changes are needed to accommodate distribution, they should be made to the
language definition. The rationale for making a change must be applied consistently
across the entire language.

Modifying the language definition for distributed execution should not be used
as an excuse to make modifications to the language not required by distributed
execution. The language should be modified as little as possible.

It is important to develop a precise and well defined set of terminology that is
used to discuss the distribution of Ada. For example, the notion of shared variables
is not as clear as one might think because even variables inside a package body

may be shared across machines, depending upon what units of the language are
distributable.

The last section of this summary defines a set of terms used in descriptions and
discussions of distributed Ada. It was emphasize during the presentation that a
set of definitions and terms needs to be accepted amongst researchers, designers,
and implementors of distributed real-time systems. A single interpretation cf the
following terms is needed to enable precise exchange of information and discussion.

1. Distributed execution: More than a single processor executes the code of a
single program.

2. Global (shared) variables: Variables that appear in the specification of a pack-
age that is referenced from code executing on more than one processor.

3. External global (shared) variables: Same as global variables.

35

. Internal global (shared) variables: Variables withi: . subprogram, task or
package body that, because of distribution of code are referenced from more
than one processor. ’

. Global (external state (of a package): The set of variables that appear in the
specification of a package.

. Internal State: The set of variables declared within a package, task or sub-
program body.

. Distribution of a program: The process of making the following two decisions:

a. which segments of code execute on which processors, and

b. which code and data segments are stored on which memories.
. Unit of distribution: One or more of the following:

a. A segment of code that may be caused to execute on a single processor.

b. A portion of system state (internal or external) that may be caused to
reside on one or more memories in the system, or

c. data type definitions that may be utilized by code executing on more than
one processor.

Several definitions for virtual nodes have been adopted, however, it was shown

that the concept of virtual node has a board spectrum of interpretations. The
following question was presented:

Is the notion of a virtual node an essential language construct, or is it a
useful design methodology?

The notion of a virtual node is based upon a notion of physical nodes, which is

directly related to the architecture of the system. There was no attempt to define
a physical node.

It was observed that present concepts of virtual node appears to cloud several

separate concepts:

1. the need to place restrictions on the language related to distribution,
2. the need to organize a distributed problem, and

3. a desire to further structure programs within the language.

More work is needed on defining the definition and concept of a virtual node.

36

4.5 Ada Runtime Issues for Real-time Systems

Dr. Ted Baker of Florida State University gave a presentation on Ada Runtime
Issues for Real-Time Systems (RTS). The major problem that has been identified
for Ada runtime systems is that the Ada RTS intrudes into traditional operating
systems (OS) and executive domains. In the past, an implementor may code the ex-
ecutive or use existing OS calls to gain a finer degree of control over the system (e.g.,
timing). So by intruding into the OS and executive domains, Ada has preempted
the implementor from controlling issues critical to the success of applications.

There are four major issues that face designers of Ada run-time kernel today.
The first is meeting the timing constraints of applications. The second, fault recov-
ery and reconfiguration pose, problems due to Ada’s inability to support dynamic
binding, resource reallocation, and program control-flow modification.

The third issue is distributed Ada systems. Several groups are currently re-
searching distributed Ada issues. Some of these issues are the same as those con-
sidered for fault recovery and reconfiguration.

The fourth issue is interrupt management and I/O. Control over interrupts
within the Ada model have create a number of problems in applications. The
same holds for I/0, since it is also highly depended on interrupts.

In general, implementors want more contol over the Ada RTS and more func-
tionality. The current Ada minimal RTS is inadequate for real-time systems.

In an attempt to solve the above problems, four approaches were discussed.
At present there is a need for a requirements language that can capture real-time
requirements. The Ada language has a number of short comings with respect to
implementing real-time systems, for example, expressing timing constraints. Lan-
guage modifications and additions would be needed. The need for an expert auto-
programmer to assist in the implementation of complex real-time systems (e.g.,
selecting the most efficient design approach for a specific target) could be used to
increase system reliability and decrease cost and time.

The above approach is presently beyond the state of the art and would require
a long term research plan and possibly some major changes and additions to the
language. A second approach would be to utilize compiler options such as pragmas,
the linking to different Ada RTS, or the setting of attributes within the RTS. Many
Ada compiler vendors offer these capabilities today.

The problem with this approach is that the real-time application domains is
broad and it constantly evolving. Solutions (options available today) that provide
a solution for a current system will probably be inadequate tomorrow.

A third approach was the user replacing and supplementing RTS components.
Two methods were proposed for this approach. The first was to have the user
customize the RTS. This provides the user with the capability of changing the
implementation of a component within the RTS which has been identified as inade-
quate for the application. It also enable the user to provide additional functionality

37

that does not exist with the current RTS.

The second method is to provide a clean and stable interface between the code
that the compiler generates and the RTS. This work is currently being done with
the SIGAda subgroup, Ada Runtime Environment Working Group (ARTEWG)
The interface is called the Model Runtime System Interface (MRTSI). This would
provide the user with the capability of selecting from a set of RTSs, the one that is
most suitable for the application.

The fourth approach is to use a RTS interface and allow the user to modify or
provide a set of internal components for the RTS. For example, an application may
require a specific scheduler (not in violation of the Ada language) that has yet to
be implemented by any vendor. Other internal components that a user may want
to supply are real-time clocks, storage allocation, or interrupt handlers.

The notion of having all executive functions written in Ada was discussed. This
concept provides a method of layering in which the Ada environment would be orga-
nized in layers from the bare machine to the application. In order to implement the
entire environment in Ada, the language would need to be extended. These exten-
sions will add a few more atiributes, representation spccifications, and mechanisms
to get around strong typing of data.

These extensions are necessary for bootstrapping layers onto the bare machine.
There is a need for bootstrapping in the design and startup of the Ada environment.
In startup, the system must be loaded and initialize. To account for the evolution
of the environment, the system must be designed to enable the bootstrapping of
additional functionality.

In general the system starts with a bare machine. The environment must be
bootstrapped on this machine. This provides minimum support and it should be
noted that this Ada code executes without an Ada run-time system. On top of
this layer will be layers that support exceptions, tasking, dynamic storage, fault
recovery, distribution, etc.

The following list summarizes the advantages of layering:
e controls complexity,
e allows for system evolution, and

¢ address the development and start-up processes (bootstrapping).

38

4.6 Some Issues in Processor Selection for Em-
bedded Systems

Dr. Joseph Linn of the Institute for Defense Analyses gave a presentation that
reviews issues in processor selection for an embedded system. The summary below
gives a description of the main points made during the presentations.

There several important difference between real-time military embedded appli-
cation and commercial applications. For military embedded applications the design
of the system must account for worst case optimization. This is essential since
real-time hard deadlines that are missed in these systems have the potential for
catastrophic results.

Real-time military systems usually have strict constraints on system level en-
vironments. Constraints on power and size for example, have major impacts and
limitations on design.

Another difference between the real-time military applications and commercial
applications is the system lifetime. Most military systems are expensive to replace
and can also be executing in a mission critical application, which inhibits complete
system replacement. Even minor modification to these operational systems may be
difficult.

In selecting chips for commercial and military systems, differences between the
availability of application code and code compatibility strongly influence selection.
There are a large number of commercial application software that can adequately

meet system requirements. However, military application software is less abundant
and usually must be designed and implemented.

Commercial vendors place large emphasis on object code compatibility with
existing products. The DoD places emphasis on source code compatibility.

Appropriate standardization is very effective for reducing costs. Conversely,
inappropriate standardization greatly increases cost and could prevent the meeting
of requirements. Standardization of application-specific interfaces is essential for
competitive procurement.

Two argument were madc against ISA standardization:

¢ ISA standardization does not standardize hardware due to the fact that many
boards in a system are unique due to strict environmental constraints. Further,
logistics support is not decreased since fleld replacement is normally the board
rather than the chip set.

e The DoD has already taken the position that software notation is to be stan-
dardize at the level of the Ada programming language. Thus, low-level stan-
dardization is unnecessary.

Architecture is related to performance only by knowledge of the application.
The components of the performance equation are not known until the application

39

is known. Further, if the application is known, application-specific figures of merit
may also be kno > n that are architecture-independent.

It is essential that the appropriate compiler technology be available. If not,
architecture enhancements for the applicat'on will not be realized.

Three current and popular architectural approaches were reviewed: lean-cycle,
Reduced Instruction Set Computer (RISC), and Application Specific Instruction
Set Computer (ASISC).

The lean-cycle approach selects the basic cycle of the machine to be the leanest
possible that is consistent with dispatching a useful instruction on every cycle. The
fundamental concept of the lean-cycle approach is that application programs are
implemented in a high-level language. Therefore, hardware capabilities that are
not available to the compiler are not available to the application for performance

enhancements. This results in all lean-cycle architectures being high-level language
directed.

The RISC approach is summarized by the following rules:

e Instructions should be few in number, simple to decode, and of fixed size to
avoid decoding bottlenecks.

e Only load and store instructions should reference memory (ALU instructions
should not).

e When available hardware is limited, the best performance is obtained when
the utilization of non-register hardware is maximized.

Currently, there is evidence that indicates that each of these rules is being ob
soleted by advances in technology. Therefore, RISC ISAs standardization does no-
meet the standardization criteria mentioned previously.

Another approach that system designers can use the function-first design ap-
proach. This provides a large amount of application-specific information during
the design of the hardware. The designer may then select the lowest cost existing
architecture that satisfies the given performance and physical constraints.

If no satisfactory candidates exist and keeping in view the need to hold down
cycles/instruction and cycle duration, there are ways to incorporate additional func-

tion in an architecture to increase performance for a given application, i.e., to de-
velop an ASISC.

In summary this presentation made the following observations:

e DoD has standardized on a high level language; therefore, ISA standardization
is at least redundant and probably counterproductive.

e Benchmarks of computer systems are only relevant to the extent that the
benchmark captures the performance of the proposed application.

40

e If application-specific analysis reveals a payoff, designers must be free to utilize
application-specific ISA extensions so long as such extensions are consistent
with the development schedule.

41

4.7 Military Aeronautical Communications Sys-
tem (MACS) Ada Presentation

Captain Don Pottier of the Department of National Defense (Ca ada) and Stephen
Michell of PRIOR Data Sciences (Canada) presented an overvi. of an Ada-based
system called the Military Aeronautical Communications System (MACS).

In an attempt to gain experience in using Ada in defense weapon systems,
Canada’s Department of National Defense sponsored a research and development
effort to implement an existing component in a defense system in Ada. The system,
Military Aeronautical Communications System, controls radio transmitter hard-

ware that is remotely located. The existing system was implemented in Pascal on
a PDP-11/23 and RSX-11M operating system (OS). !

The goals of the project was to rewrite the application code in Ada and use
as much of the existing hardware as possible. At the time of project startup, a
validated Ada compiler for the PDP-11 was not available.

It was decided to purchase a MC68010 processor board that could be placed on
the existing Q-bus. There were two advantages to this approach:

i. A validated compiler was available for the MC68010.
2. Existing hardware on the Q-bus could still be utilized.

A Microvax-II having a Q-bus was used in running VMS.

The design of the system was to mirror the MACS Pascal design. The rationale
was to reduce the risks of redesigning the system. Since the orginal design used
operating system service calls, the Ada based system would have to provide such
an interface.

The RSX-11M services used in the orginal system are listed below:
¢ scheduling of processes,
e communication between processes,

¢ timer functions,

interface to serial I/O devices, and

disk 1/0.

Ada tasking provided the scheduling mechanism that was needed from the OS.
Rendezvous provided the communications between tasks. Ada delays were used
for the timers; however, several customized timers were implemented to provide

1PDP-11/23 and RSX-11M are trademarks of the Digital Equipment Corporation

42

capabilities outside the scope of the delay construct. A package written in Ada was
used to provide the interface, operations, and data types needed for the serial I/0
device. The design was modified so that the disk was loaded at system booting into
memory, a disk driver was not required.

Several problems were encountered by the MACS Ada design and implementa-
tion. The Ada interrupt mechanism provided with the compiler was not adequate to
support several fast interrupt services of the systems. To circumvent this problem,
an assembler module was implemented to buffer data for a calling task.

Using the Ada tasking mechanism (RSX-11M was used in the orginal system)
cause some deadlocks to occur that had not been experienced in the Pascal-based
system. Customizations to the run-time system were necessary during the develop-
ment of this system. It was suggested that since this was considered an essential
capability, it should be provided explicitly in the development environment.

43

4.8 Real-time Distributed Database Management

Pat Watson of IB!{ Federal Systems presented requirements for a real-time dis-
tributed database management system (DBMS). The intent of the presentation was
to give the audience a perspective of some real-time requirements for distributed
database systems. It should be noted that this presentation was given from a sys-
tem’s viewpoint.

4.8.1 System Description

The system environment is an on-board submarine DBMS. It is distributed on a
Local Area Networks (LAN) with anywhere from 50 to 500 processors. System
must be highly reliable. Redundancy is used to recover from hardware faults and
extensive testing is performed on the software to guarantee its reliability during

various mission scenarios. The response time of the system can range from 10 msec
to many seconds.

There are essentially three resources to management in this system: processors,
LANs, and database managements resources. In order to meet the system latency
requirements, the design must incorporate the appropriate resource management
mechanisrns.

Processor technology used in this system will more than likely be either a 680X0,
80X86, or combination of both families. Real-time and distributed run-time kernels
will need to be optimized for these processors in the near future.

LANs will be fiber-optic bus/ring topologies. The LANS will be networked to-
gether and need to support multidomain operations. A real-time Network Operating
System will be used to manage message latency.

DBMS will use optical disks; however, older technologies (magnetic disks) will
remain in submarine systems for some time. A special purpose DBMS processor
will be needed to meet the real-time requirements of the system. It is likely that a
combination of processor memory based DBMSs and RAM disks will be used. File
servers will be designed and implemented to take advantage of the above technolo-
gies.

4.8.2 System Analysis

The effectiveness of the architectures designed for these systems are evaluated by
four measures: (1) predictable system response; (2) high utilization; (3) process
level reconfiguration capability; and system sofiware update cycie time. Tasks,
messages, and database transactions are dependent on the system to guarantee
response within a specified time constraint. In some cases, the time constraint will
be required to be highly accurate. The system may also be requested to perform
these services periodically or aperiodically.

44

To achieve a highly utilized system, the design will have to support a high degree
of resource sharing. This is typical in many DoD real-time embedded systems due
to weight and power constraints of current platforms. Utilization of resources also
helps.lower the cost of the system.

These systems place another constraint: resources must remain stable over a
broad spectrum of loads. For a high degrze of reliability, the system will include a
number of redundant components.

The system must also be able to reconfigure itself in the event of a resource
failure. It is vital that the reconfiguration process sheds processes that are least
critical. Reconfiguration time must be kept to a minimum. There should be an
efficient closed form solution for finding viable reconfiguration options.

During the operational lifetime of the system, changes to the software must not
require large regression time for testing modules which are not changed. This type
of isolation from testing is difficult to achieve.

4.8.3 Predictable Timing

It was observed that one of the major causes of failure in real-time distributed data
base systems is timing. This is a result of poor system management of shared system
resources. The solution to this problem is to assure that each shared resource be
schedulable: Direct Memory Access (DMA) control, I/O channel, data bus, disk,
display, database manager, and microprocessor/hardware controller.

In order to assure that each shared resource is schedulable, it is necessary to be
able to predict timing behavior. This is critical in meeting requirements for highly
utilized real-time distributed systems with hard/firm deadlines. The following list
is a set of system behaviors that require predicatable timing: responsiveness, op-
erability, reconfiguration, availability, reduction in test time for complex real-time
systems, cost, rapid system update, and system readiness.

4.8.4 System Partitioning

The submarine system described in this presentation was based on a set of as-
sumptions that apply to mission-oriented real-time distributed systems that are
within the application domain of submarine platforms. The first assumption is that
only message and data base management interfaces between processes are allowed.
Although a process could consist of tasks that share memory, all interprocess com-
munication are still restricted to messages or database transactions.

The rationale for the above cominunication scheme is that it enables task within
a process to be implemented so that real-time performance requirements can be met.
It enforces software modularity that would greatly assist in system maintenance
and test. A standard communication interface that facilitates system integration
for components. And the system would be easy to update because data would be

45

accessible to new software.

The second assumption is that the only system tasks not known at design time
are database queries.

4.8.5 Real-time Database Performance

Real-time distributed DBMSs performance will be effected by the following;:
e subset of relational access capabilities,
¢ distributed database/file management,
o precompiled queries,
¢ data maintained in application format,
¢ memory and disk based relational tables,
¢ time driven scheduling,
o separate file management facilities,
o separate file management facilities, and

e selective use of consistency mechanisms.

With respect to system performance, database consistency could be considered
harmful in a real-time system. In many cases, consistency is not always required and
since consistency requires blocking, real time deadlines have a greater potential to
be missed and results in unpredicatable timing behavior. The design of the system
should be based on selectively choosing consistency preserving mechanisms.

4.8.6 Summary

At present there does not exist an integrated system wide approach to managing
tasks, messages and database transaction latencies. Until an unified approach is
identified or created, system development, testing, and maintenance will be costly.

Since the distributed /real-time system describe here is typical of many DoD ap-
plications, predicting and management of network latency will need a formal model
to base their design. Otherwise, it wil be impossible to consider either the reuse of
components (where new design will be required) on the design and implementations
of other systems to reduce cost and time future or extending current systems.

Share resources (e.g., CPUs and I/O channecls) must be scheduled based on
user specified response requirements. In a distributed system this may involve a
combination of resources hosted on a number of machines throughout the network.
As mentioned above, managing network latency ic difficult (due to lack of formal
methods) and designers need an integrated system approach.

46

4.9 Review of Current Ada compiler and Run-
time System Support for Real-time Systems

Mike Kamrad of TRW presented a set of Ada run-time concerns and activities that
the Ada Run-time Environment Working Group (ARTEWG) has identified and is
currently evaluating solutions and approaches to the problems.

Using Ada as the standard programming language for DoD systems has resulted
in giving an impression that great improvements in software reliability and reduce
lifecycle costs will occur immediately. Ada is also perceived as providing easy so-
lutions to difficult application domains that are real-time, distributed, and highly
reliable.

The above expectations have created a number of management problems ranging
from the improper application of the language to overoptimistic design, implemen-
tation, and testing schedules (directly proportional to cost). The Ada community
is now faced with achieving a set of ambitious promises (greatly improved software
productivity) and general perception by program offices and management as Ada
being the ultimate software solution.

The initial set of validated Ada compilers were lacking in the performance that
was needed to meet the stringent requirements of embedded real-time DoD systems.
Improvements in Ada compilers and run-time systems over the past few years have
enable applications to be used in more critical DoD systems. Although the improve-

ments are an encouraging sign, Ada usage in a number of application domains is
still limited.

The developer of applications in Ada is confronted with little knowledge about
the Ada run-time environment. For instance, mechanisms that are used to support
memory management, tasking, and interrupts could have major impacts on the
design of the software, yet mechanisms that support these functions can vary greatly.
The degree of control that the user has over the run-time system may inhibit Ada
use in real-time applications.

The Ada vendor community has had to devote much of its resources in the early
eighties with respect to validating their compilers and spreading their technology as
widely as possible. Performance took a back seat, although as noted previously, re-
cent ir~orovements have been encouraging. This has resulted in a lack of knowledge
with Ada vendors about applications and supporting executives.

Ada has been designed to be used across a large number of application domains
within the DoD that require construction and maintenance of large programs. The
goal of standardizing on Ada was two-fold: developers were required to be fami-
lar with only one language and a standardized suppztt environment for creating,
editing, compiling, testing, and documenting program..

As projects began to use Ada, a number of problem: were exposed with several
software methods. Programming in the large for systems that are real-time and

s

l! 14 s

LY L.. bl L

47

support mission critical functions have traditionally been approached in an ad hoc
manner with respect to design, implementation, and testing. A number of the
software methods being applied had not been used extensively in the development
phase of a system or only for a specific class of applications.

The f{ollowing concerns have been summarized in the Table 4.1:

Concerns Example
Promise of great improvement | Software productivity
Perception of use Real-time Distributed Systems
Failure of implementations Performance
to meet expectations
Lack of knowledge about Different mechanism to support
run-time environment tasking and memory management
Compiler support for specific | Avionics
application domains
Problems with current Analysis of Real-time
software methods systems

Table 4.1: Concerns of Ada Community

The ARTEWG has supported a number of activities that are currently ad-
dressing issues that are concerns to Ada designers and implementors of real-time
embedded systems. The group has produced a white paper entitled, The Challenge
of Ada Runtime Environments.

This paper noted that the first generation of Ada runtime environments were
inadequate with respect to size, tailorable, or a level of performance for real-time
embedded systems. Traditionally, the designer and implementor of a system would
write their own executive, therefore decisions on performance and size were in their
control. As the Ada run-time environment is produced by a vendor, modifications
to the kernel are much more expensive with respect to cost and time.

It is difficult for a vendor to customize a kernel that can be used across a board
spectruin of real-time applications. Vendors have few resources to supply and sup-
port application specific runtime environments since the cost and amount of re-
sources that would be required would be prohibited. Also, communication between
vendors and users of runtime environments is lacking, making feedback from prob-
lems in the field difficult and thus increasing the time between improved runtime
environment versions.

To provide assistance in solving the above problems, the white paper recom-
mends a set of strategies and tasks on detailed investigation of technology and
requirements, evaluation through proofs-of-concept, and changes in DoD and Tri-
Services policies that will accelerate Ada runiime environment technology and suc-
cessfully insert that technology into the development of embedded real-time appli-
cations.

48

ARTEWG has reviewed and analyzed the Ada Language Reference manual for
runtime implementation dependencies. This has been documented in, Catalog of
Ada Runtime Implementation Dependencies. This document provide a list that ex-
plicitly shows where runtime vendors have flexibility in the implementation of their
kernel’s.

The benefits of cataloguing runtime implementation dependencies is that it pro-
vides guidelines for selecting a compiler that best fits its behavior requirements.

As with many other fields, a common vocabulary and accepted models and
concepts are necessary for precise and accurate communication. The ARTEWG
paper, A Framework for Describing Ada Runtime Environments, describe a proposed
framework for the Ada runtime environment.

The document provides tutorial information in the form of a historical perspec-
tive on runtime environments. This information is logically sequenced leading the
reader to a current description of the Ada runtime environment. A glossary is in-
cluded that gives a concise and consistent set of terms used throughout the paper.

Ada has been wpplied to a number of applications. In order to assist the Ada
community understanding of current and future DoD embedded systems require-
ments on the Ada runtime environment, an analysis was performed on various
applications.

The analysis was a set of questions that asked to implementors involved with
an applications that were related to the runtime requirements. The information
obtain from the questionnaires has been correlated and documented as SIGAda
ARTEWG Survey of Application Requirements. A tutorial is included describes
mission platforms and types of mission functions the application supports.

49

4.10 U.K. Ministry of Defence Ada Evaluation
System

Mike Looney of the UK. Admiralty Research Establishment Ministry of Defense
(MOD) presented an overview of a system that evaluates Ada environments.

Ada is the single preferred high-order language for defense real-time computer
systems in the U.K., as of 1 July 1987. The language has not been mandated due
to political problems that may have resulted.

The MOD has developed an evaluation suite to access the performance of vali-
dated Ada compilers. The suite is over 100K lines of Ada code (200 test programs)
and analyzes the following areas:

e quality of generated code,
o quality of diagnostics and informational output,
¢ compile-time performance, and

¢ compile-time and run-time limitations

The .ests were targeted to four different types of systems: embedded, distributed,
large scale, and real-time.

A test bed as been constructed to run the test suite on various machines and
compilers. It is expected that more machines will be added to the testbed and
compilers to evaluate. Tests thet evaluate task pre-emption, interrupts, calls to
services outside the Ada environment, asynchronous I/0, scheduling, and memory
management are still in need of refinement.

Ray Foulkes of Yardly Ltd. presented several concerns that currently exist within
the U.K. about using Ada for real-time systems.

The concern of the overhead involved with context switching between tasks is
an 1ssue that the Ada community has been struggling with and countinues to try to
improve upon since the first set of validated compilers became available. In real-
time systems, a design can be severely penalized on a target and compiler that does
not support an efficient context switching mechanism.

It has been observed that to avoid such problems, many project teams are pro-
hibiting or severly limiting the use of the Ada tasking. The problem with this
approach, is that it prevents the designer and implementor from taking advantages
of all the benefits of Ada tasking.

Another attempt to gain enhancements in performance has been to place some of
the application into the run-time kernel (e.g., device handlers). This was refer to as
creeping assemble intrusion. This essentially increases the run-time kernel size and

50

decreases the application size. Most run-time kernels today are implemented in as-
sembly language. This defeats one of the advantages of implementing an application
in a high order language.

Some designs have called for additional hardware to support or enhance the Ada
language. The disadvantage with this approach is that it increase the power, space,
and weight requirements to support the additional hardware. In many cases, the
system cannot afford the extra costs.

In the U.K., the lowest cost bidder wins the contract regardless of the high
ordered programming languaged used. To meet the performance requirements of
many real-time systems, Ada may be more costly and therefore discourage its use.

Two points should be noted about the above statements. First, the initial use of
Ada (due to its maturity and lack of experience appling it to real-time systems)will
be more costly than languages currently being used by the real-time community.
Second, life-cycle costs are not taken into account into the above contracts in the

U.K.

The current use of Ada in the U.I{. will be prohibited since it presently cannot
be competitive on a cost basis with other langauges. One of the major cost savings
that Ada provides is in the maintance phase of the software life-cycle. This is not
currently being emphasized in the U.K.

In conclusion, an important point was raised with respect to using an elegant
model (such as the tasking model) for design, resulting in a solution that is inelegant.
The concern is that if Ada is to used for real-time systems, it must provide an overall
elegant solution.

51

4.11 Architecture Optimization Approaches

Dr. Joseph Linn of the Institute for Defense Analyses (IDA) gave a presentation of
joint research between the Institute for Defense Analyses and Stanford University,
entitled The Architect’s Workbench, the following paragraphs are an overview of this
work.

Technology is reducing delay and increasing the density of new processor chips.
It is reasonable to consider that CPU performance can improved by adding re-
sources. This will occur if the average cycles per instruction does not increase.

One possible analysis to determine if performance will improve is to design a
machine that uses the extra resources, write a compiler for the machine, write the
application code, compile the application code, and execute the application on a
simulator for the machine or on the machine (if available). The problem with this
approach is that it is expensive.

Another approach, the focus of this research, is to develop a set of tools and
methods to facilitate CPU performance analysis so as to help determine exactly
how to add resources to the system. The major objectives of this research are listed
below:

¢ develop a design/analysis tool for application-specific architectures for embed-
ded applications;

¢ allow early evaluation of architecture and architecture/compiler pairs; and

e allow cost and performance predictions of proposed systems.

There are several possible approaches that could be taken for the development
of such a design/analysis tool. Expert intuition could be used; however, past ex-
perience has demonstrated that experts make mistakes (probability of errors is
proportional size) and therefore lowers the reliability of the tool. Another approach
is opcode counting, which is considered unscientific. This technique (used without
dynamic optimization) cannot generate unbiased results. Opcode counting using
dynamic peephole optimization is theoretically possible; however, the best known
techniques for doing peephole optimization is three instructions.

The selected approach for this research is to develop functional architecture sim-
ulations based on descriptions uf the proposed architecture(s). This is accomplished
by generating an architecture-independent representation of the flow-graph of the
application program (which for this work is Ada).

From the flow graph, the code is input into an optimizer. The optimized code
then input into an architecture simulator, which includes the architecture descrip-
tion, to generate a dynamic block-level trace with an address trace nested within.

Next, a cache simulator is used on the memory trace generated from the previous
steps against various memory hierarchy simulations to determine performance. A

52

technology analysis tool is alsu available to measure cost parameter, for example
silicon area.

It was noted that most compiler optimizations are architecture-independent and
preserve the flow graph of a program. Thus, the flow graph of a program after
optimization is largely independent of the target architecture, although for certain
optimizaticn for architectures, this is not true.

The previous concern is important for Ada. There are certain characteristics of
Ada such as constraint checks that can cause a program to run inefficiently. Con-
straint propagation can be used to make the program run efficiently. Problems like

these may make it necessary to include multiple Ada front-ends to The Architect’s
Workbench.

53

4.12 Real-Time Communications

Alfred Weaver of the Department of Computer Science at the University of Virginia
presented a summary of performance data that was gathered from experiments
on a Local Area Network (LAN) running communication protocols based on the
International Standards Organization (ISO) Open Systems Interconnection (OSI).
The relationship of this work to real-time Ada systems is based on the use of protocol
standards (i.e., OSI) for communication between a distributed Ada system on a

LAN.

The testbed consisted of two host CPUs (based on an Intel 80286 CPU 6.0 MHz)
with one megabyte of RAM. The physical communications media was a iISBX554
token bus. The software was supplied by Intel and is an early implementation
version of the OSI communication protocols for the data link (8802/4) and ISO

8073 Class 4 Transport. Experiments were performed with only two hosts on the
token bus.

The network layer was bypassed since all communications would be within the
LAN. It should be noted that overhead associated with an existing network layer
would have an impact on the performance.

Throughput and delay measurements were made at the data link and transport
layers. The experiments adjusted several parameters at the two layers: retransmis-
sion timeouts at the transport port layer; maximum window size at the transport
layer; and message size at both the transport and data link layer.

The results indicated that system throughput under the best conditions could
act as a bottleneck for distributed applications (e.g., Ada tasks) needing to transfer
information. Although more efficient OSI implementations will be developed in the
future, there is some concern about their application in real-time systems.

54

4,13 A System for Evaluating Ada Implementa-
tions using Synthesized Benchmarks

John Knight of the Software Productivity Consortium presented an Ada evaluation
system that uses synthesized benchmarks instead of the traditional benchmarks to
provide specific implementation information with respect to system loading. The
presentation addressed the current dilemma that a software manager must cope with
attempting to analyze the feasibility of an Ada software design based on preselected
hardware and system constraints.

Many past and current systems have been built with the hardware selected first
and then having the software designed to meet system performance and constraints.
The targets for these systems were generally simple synchronous design, and the
software was a mix of high-level (e.g., FORTRAN) and assembly languages.

Current and future systems characteristics will be complex targets, asynchronous
design, and will use Ada for the implementation of the software. The current group
of Ada compilers have been in existence for about five to seven years. Although
there has been a steady history of improvements in compilers and run-time systems,
performance differences on a target bearing different loads can be considerable.

Since software development is costly, there is a need to predict if a software
design (implemented in Ada) can meet system performance and constraints. To
reduce this risk, a tool is needed to estimate performance.

Classic benchmarks have been used in the past to assess relative performance.
However, these results give only the following information: which hardware is
fastest; which compiler is fastest; and is the new version faster than the old. The
following is a list of problems with existing benchmarks:

¢ None addresses specifics of a particular application.

o Few make provision for dependence on load.

¢ None allows parametric studies. The following areas need to be considered:
1. There might be discontinuities in performance.

2. There might be feature interaction.

What is needed is a method that assesses the application’s absolute performance
with respect to real-time deadlines and memory limits. A benchmark synthesis
system has been developed that takes as input a load description that will match
the target environment. The load description is a special purpose language that
can describes the following details:

¢ input and output activity,

¢ exception existence and rates of occurrence,

55

anticipated computational activity,

data volume,

input and output rates,

tasking structure, and

task synchronizations.

The load description is then compiled by a Benchmark Synthesizer compiler.

When the expected load has been defined, the system synthesizes an Ada program

that, when executed, subjects the target environment to the load defined in the

benchmark description. The Ada program is compiled and then executed on the

@ target hardware, various timing measurements are made, and a postprocessor gen-
erates a performance report from the measurement data.

Three timing problems were identified that had to be overcome by the benchmark
synthesis system:

1. inaccurate measurements (low resolution clocks),
2. overhead from clock sampling, and

3. overhead of randomization.

Nothing can be done about clock resolution; however, by taking a large number
of samples and averaging this will reduce the error in clock variations.

Problem two is caused by sampling the clock and storing the time in memory.
This essentially effects the timing of the system. To resolve this problem, the
operational code was timed less the measurement code? absent and present. This
was handled by the standard method of executing a code segment with and without
the code of interest. The difference in time between the two will give the time
value of the code under measure (clock overhead is factored out). The effects of the
randomization code were handled in the same maaner.

Compile-time optimizations can also be a problem for the system. For instance if
the benchmark yields to optimization and the application does not, then the actual
system would be inadequate with respect to performance. The system ensures that
most major optimizations only applicable to the benchmark will be defeated.

The following is list is a set of conclusions from the presentation:

o Adoption of Ada requires reduction of perceived performance risk.

¢ Benchmarking is an appropriate technique.

*In addition to the Ada code that is executed on the target to represent the actual system,
measurement code is added to record certain events during running of the benchmark.

56

Implementations may have performance discontinuities.

Existing benchmark sets cannot answer the question, will my application meet
imposed constraints on this target using this implementation?

Tailored benchmarks can be synthesized.

Parametric studies can be performed.
e Accurate timing is difficult.

o Large amounts of processor time and disk space are required to execute the
benchmark synthesis system.

el ‘“'.'_‘ RITRTY L A SRR TR RN

57

4.14 2nd International Workshop on Real-Time
Ada Issues Recommendations

Several members of this workshop participated in the 2nd International Workshop
on Real-Time Ada Issues sponsored by the Ada UK in cooperation with ACM
SIGAda and the USAF held in Moretonhampstead, Devon, UK on 31 May - June
3 1988. The UK workshop generated several recommendations tha. were presented
by Anthony Gargaro at this workshop. Below is a list of the UK workshop recom-
mendation and voting®:

SCHEDULING
Recommendations

e Standard should facilitate user-defined scheduling strategies (31-1-0)

e Standard should be revised to clarify rules regarding priorities (29-0-1) includ-
ing:

1. FIFO queues
2. Interrupts

3. CPU allocation
4

. Static priorities
DISTRIBUTED EXECUTION

Recommendations

e Standard should address units of distribution (20-3-7).
o Virtual node offers potential solution for units of distribution (25-4-2).
o Specific issues to be addressed by 9X should include:

1. pragma shared (26-0-5)
2. conditional/timed entry calls (31-0-0)

3. anomalous instance of delay (28-1-2)

3The voting can be interpretated: (Yes-No-abstained).

ASYNCHRONOUS TOC
Recommendations

¢ Standard should facilitate the following requirements (30-0-1):

1. Response to asynchronous events
2. Fault recovery
3. Mode change

4. Partial computation

¢ Standard should include specific support for asynchronous exceptions (23-0-8).
FAULT TOLERANCY
Recommendations:

o Standard should facilitate application controlled reconfiguration and recovery

(30-0-1).

e Standard should provide minimal language support for reconfiguration and
recovery (15-0-15).

o Standard should define semantics for failure and distributed execution (19-1-

10).

‘.,m_%.u VAL Ll N w.&.ﬂ;m,mmw il st B8

Part VI

Appendices

59

ACM
ALU
ARTEWG
ASISC
CPU
DBMS
FFT
FIFO
ISO
HZ
IDA
IPC
ISA
ISO
KHZ
MACS
MOD
MRTSI
MS
ONR
oS .
OSI
OSUSD
RAM
R&AT
RISC
SE1
S1G
TTCP

Glossary

Association for Computing Machinery
Arithmetic Logical Unit

Ada Runtime Environment Working Group
Application Specific Instruction Set Computer
Central Processoring Unit

Database Management System

Fast Fourier Transform

First In First Out

International Standards Organization
Hertz

Institute for Defense Analyses

Interprocess Communications

Instruction Set Architecture

International Standards Organization
Kilohertz

Military Aeronautical Communications System

_ Ministry of Defense

Model Runtime System Interface
Milliseconds

Office of Naval Research

Operating System

Open Systems Interconnection
Office of the Deputy Under Secretary of Defense
Random Access Memory

Reasearch and Advance Technology
Reduced Instruction Set Computer
Software Engineering Institute
Special Interest Group

The Technical Cooperation Program

60

List of Workshop Attendees

Mr. Phil Andrews

Dr. Ted Baker

Mr. James Baldo Jr.

Mr. Joseph Daiz

Ms. Mary Bender

Mr. Clyde Chittister

Dr. Jorge L. Diaz-Herrera

SPAWAR, Navy Sea Command
MS CP6/880

Washington, DC 20362

(703) 692-3231

Florida State University
1304 Leewood Drive
Tallahassee, FL 32312

(904) 385-8923
ajpo.sei.cmu.edu

Institute for Defense Analyses
1801 N. Beauregard Street
Alexandria, VA 22311

(703) 824-5516

baldo@ida.org

Ada Information Clearing House
3D139

1211 S. Fern St. (C107)
Pentagon

Washington, D.C. 20301

(703) 694-0211
jbatz@ajpo.sei.cmu.edu

Army CECOM, Cntr Soft. Eng.
AMSEL-RD-SE-AST

Fort Monmouth, NJ 07703
(201) 544-2105
mbender@ajpo.sei.cmu.edu

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

(412) 268-7781
chittister@sei.cmu.edv

George Mason University, CS
4400 University Drive
Fairfax, VA 22030

(703) 323-2713
jdiaz@gmuvax

61

Mr. Ray Foulkes

Mr. Ed Gallagher

Gargaro, Mr. Anthony

Dr. Karen D. Gordon

Mr. Tom Griest

Mr. Alec Grindlay

Ms. Deborah Heystek

Dr. Norman Howes

Yark Limited
Charing Cross Tower
Glasgow G24PP
United Kingdom

44 41 2042737

Army CECOM, Cntr Soft Eng
AMSEL-RD-SE-AST

Fort Monmouth, NJ 07703
(201) 544-4149
egallagh@ajpo.sei.cmu.edu

Computer Sciences Corporation

304 West Route 38
Moorestown, NJ 08057
(602) 234-1100 x5791
gargaroQ@ajpo.sei.cmu.edu

Institute for Defense Analyses
1801 N. Beauregard Street
Alexandria, VA 22311

(703) 845-3591
gordon@ida.org

LabTek Corporation

8 Lunar Drive
Woodbridge, CT 06528
(203) 389-4001
griest@ajpo.sei.cmu.edu

SPAWAR 3242
Washington, DC 20363-5100
(202) 692-9207

Institute for Defense Analyses
1801 N. Beauregard Street
Alexandria, VA 22311

(703) 824-5513
heystek@ida.org

Institute for Defense Analyses
1801 N. Beauregard Street

"Alexandria, VA 22311

(703) 824-3533

62

Mr

. Robert Johnston

. Mike Kamrad

. John C. Knight

. John F. Kramer

. Claude Labbe

. Joseph Linn

. Robert Little

63

Dept. of National Defense
101 Colonel By Drive
Ottawa, Ontario K1A OKZ
(613) 944-8620

TRW

Federal Systems Group
Command Support Division
FP2/321

One Federal Systems Park Dr.
Fairfax, VA 22033
mkamrad@ajpo.sei.cmu.edu

Software Productivity Consortium
1880 N. Campus Comns. Dr.
Reston, VA 22091

(703) 391-1849
knight@software.org

Institute for Defense Analyses
1801 N. Beauregard Street
Alexandria, VA 22311

(703) 824-5504
kramer@ida.org

Defense Research Estab, Valcartier
PO Box 8800

Courcelette, Quebec GOAIR0
(418) 844-4346
jclaude@dmec-cre.arpa

Institute for Defense Analyses
1801 N. Beauregard Street
Alexandria, VA 22311

(703) 824-5502

jlinn@ida.org

British Defence Staff
British Embassy

3100 Massachusetts Ave
Washington, DC 20008
(202) 898-4618
rlittle@a.isi.edu

Dr.

]

Douglass Locke

Mzr. Mike Looney

Mr. Steve Michell

Mr. Offer Pazy

Captain Don Pottier

Mr. Tom Quiggle

Mr. Clyde Roby

IBM Fed. Sys. Div./Owego Plan
Bodle Hill Road

Owego, NY 13827

(607) 751-4291
locke@cs.cmu.edu

Admiralty Research Estab
Portsdown

AXC4, BLK3

Portsmouth PO64AA

United Kingdom 705 219999 x2330
mjl%uic.mod.are-pn%uk.mod.relay

Prior Data Sciences

240 Michael Cowpland Drive
Kanata, Ontario K2M1P6
Canada (613) 591-7235

Intermeterics

733 Concord Avenue
Cambridge, MA 02138
(617) 661-1840
offer@inmet.inmet.com

National Defense Headquarters
101 Col. By Drive

Ottawa, Ontario K1A0K2
Canada

(613) 996-6891

TeleSoft

5959 Cornerstone Court West
San Diego, CA 92121

(619) 457-2700
telesoft!tom@ucsd.edu

Institute for Defense Analyses
1801 N. Beauregard Street
Alexandria, VA 22311

(703) 824-5536

roby@ida.org

64 o

Mr

Dr.

. Lui Sha

. Leland Szewerenko

. William Taylor

. Pat Watson

Alfred C. Weaver

. Andre vanTilborg

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

(412) 268-5875

sha@k.cs.cmu.edu

Tartan Laboratories
477 Melwood Ave
Pittsburgh, PA 15213
(412) 621-2210

Ferranti International

Ty Coch Way

Cwmbian, Gwent NP44 7XX
United Kingdom

44 6333 71111

IBM Federal System Division
9500 Godwin Drive
Manassas, VA 22110

(703) 367-4536

watson@k.cs.cmu.edu

Univ. of Virginia

Dept. of Comp. Sci., Thorton Hall
Charlottesvil'e, VA 22903

(804) 979-7529

acwQcs.virginia.edu

Office of Naval Research
Code 1133, 800 N. Quincy St.
Arlington, VA

(202) 696-4302

avantil@nswc-wo.arpa,

ARTEWG Document

A Framework
for
Describing
Ada® Runtime Environments

Proposed
by
Ada Runtime Environment Working Group
of
SIGAda

15 October 1987

®Ada is a registered trademark of the U.S. Government, Ada Joint Program Office
®UNIX is a trademark of Bell Telephone Laboratories

Copyright ©1987 by the Association for Computing Machinery, Inc., Special Interest Group on Ada,
Ada Runtime Environment Working Group. Copying without fee is permitted provided that the copies
are not made or distributed for direct commercial advantage and credit to the source is given.
Abstracting with credit is permitted. Photocopying and electronic data transmission of this document .
are permitted for private use.

Abstract

The concept of a runtime environment to support program execution has always been associated with
application software - it has only been with programming languages like Ada that the concept has
become more apparent and significant to application effectiveness. The purpose of this paper is to
explain the basic elements of Ada runtime environments in order to support the presentation of
ARTEWG documents, such as the Catalogue of Runtime Implementation Dependencies.
Additionally, this paper may be useful as a framework (or common vocabulary) for buyers and
builders of Ada runtime environments to discuss details of Ada runtime environments.

The paper begins with a historical perspective on runtime environments to show how the technology
evolved to the current state exhibited by Ada runtime environments. This leads into a proposed
framework for describing runtime environments, including a taxonomy. A concise and consistent set

of terms, which are summarized in a glossary, explains different elements of Ada runtime
environments.

istorical Per iv ntime Environm
Early in software developmeat, software engineers wrote software applications on a bare computer
with few or no supporting mechanisms. The bare” computer represented all
theunderlyingcomputing resources available to the software applications. Software was
expressed in terms of a subset of the bare computer features, as Figure 1 shows, because not all the
features of the bare computer were used by the application.

Application
Program
(User Generated).

genalﬁf:s i CompUtel’

Figure 1. Application Program Execution

Framework for Describing Ada Runtime Environments

In this environment the software engineer had complete freedom to use any programming mechanism
or convention which the bare computer offered for the application. Additionally, the software
engineer was responsible for providing all the implementation details of the application program.
With complete control the engineer was able to fully customize the software to meet the requirements
of an application. But reusability of software developed in this environment was minimal because
software whose programming mechanisms differed or conflicted was difficult to combine in the
construction of new applications.

1.1 Rudiments of Runtime Environments

As more application software was written, software engineers began to 'adopt common
conventions for writing software. This was especially true when more than one software engineer
was involved in producing the software. These conventions were adopted for reliability and
interoperability purposes. Conventions made the job of writing software simpler and easier by
suppressing unnecessary implementation details. These conventions frequently included how the set
of registers was to be used and how subroutines were to interface with one another. Additionally, as
repetitious code sequences were recognized, macro generators were developed so that shorthand
notations could be used to reproduce those sequences. ,

Concurrently, software engineers recognized the need for more powerful software abstractions than
those offered by the underlying computing resources of the bare computer. For example, stacks were
recognized as a means to support recursive programming, and arrays, records, and list structures
were adopted to handle data in a more abstract manner. Similarly, mechanisms and algorithms were
developed to perform the onerous tasks of input and output. All these concepts required common
conventions ou how the data was to be constructed and how the structures were to be manipulated.
In some cases, such as handling input-output and mathematical calculations, sets of prewritten
subroutines were developed which software engineers could include in their application software.

These programming mechanisms, namely predefined subroutines and common programming
conventions for data and code structures, were the basic elements of a program runtime
environment. They created for the software engineer a more abstract and therefore more effective
underlying computing resource than that of the bare computer. Figure 2 illustrates how these
elements are integrated. As before, the application software executed on the bare computer using a
subset of the machine features, but now the application software was split between the software

Framework for Describing Ada Runtime Environments

|
3

generated directly by the engineer and the predefined subroutines that the application required. The
predefined subroutines were selected from libraries of such subroutines available to the software
engineer. Some parts of the user-generated program were directly supported by the predefined
subroutines while the remainder of the program had direct access to the bare computer, as the
interface between the user-generated program and the predefined subroutines and bare computer in
Figure 2 shows. Within the user-generated program the software engineer adhered to coding
conventions for manipulating abstract data structures and for calling subroutines, which resulted in
fragments of similar code sequences throughout the generated software. Likewise the software
engineer utilized abstract data structures, such as records, arrays, and stacks. Altogether the
predefined subroutines, the abstract data structures, and the coding conventions helped to create an
abstract machine for the generated application software which used them.

User-Generated Program Abstract
Machine
=1
code sequences ———— / | |
Application _ sbetract r___'/l] / l |
Program data — ! ' A ' " Liorary
o .-.l._: objects v P linked | d°ff. d
Vo ‘ Predefined : Predefine
= / Routines | 2 U\ Routines
- —— e pem— /
Unused !
Features E Computer

Figure 2. Early Use of Runtime Environments

It was important that the software engineer adhered to these conventions because of the
interdependence of the predefined subroutines and the common coding conventions. These
conventions ensured the sale coexistence of the user-generated code with the predefined subroutines.

Strictly speaking, each application program created its own abstract machine. The definition and use
of abstract data structures and the common coding conventions, as well as the use of subroutines
from the libraries of predefined subroutines, could differ with each application program, in effect

creating for that program its own interpretation of the underlying computing resources. Over time,

Framework for Describing Ada Runtime Environments

4

programs for similar applications adopted similar concepts of runtime environments, resulting in
commonality of abstract data structures, code sequences, and predefined subroutines.

1.2 Introduction of Automated Software Support Tools

The development of system support software, such as executives and operating systems (for the
purposes of this paper, operating systems are associated with general purpose computers and
executives are associated with embedded computers) and programming language compilers,
were built, in part, as a means to enforce and automate the establishment of effective runtime
environments. The job of providing the runtime environment generally was jointly supported by
executives and the programming languages compilers. Executives provided a predefined set of
subroutines that enabled programs to share underlying computing resources and utilities while the
programming language compilers provided the data and code conventions and the interface to the
predefined subroutines that supported the program language abstractions.

1.2.1 The Impact of Executives

As the predefined subroutines became more powerful, useful, and available to software engineers,
the frequently used subroutines were collected into a single package of subroutines. Very often the
subroutines in this package were integrated and optimized for better performance to encourage the use
of these subroutines. This package of subroutines acted as an extension of the computer, providing
more expressive power to software engineers. Typically this package of subroutines (whose contents
were usually defined by committee) contained more capability than most applications required, which
meant that some portion of that package of subroutines remained unused. This package of
subroutines provided more convenience to the user as well as increased reusability and reduced
development cost of the application software; this was at the expense of less specific support and
performance for the application. As long as the performance of the package of subroutines was
sufficient to meet application requirements, it was sensible to use the package of subroutines. Over
time this package of subroutines evolved into the sophisticated operating systems and executives of
today.

Executives extended the underlying computing resources that were available to the application and
therefore the runtime environment could be augmented to account for this. With the introduction of

Framework for Describing Ada Runtime Environments

5

executives, as Figure 3 shows, the runtime environment could be changed by taking advantage of
some portion of the executive. The runtime environment would also be composed of any additional
predefined subroutines selected by the user, and code conventions and abstract data structures
selected by the user or required by the executive. Since the choice of using the executive was
optional, the elements of the runtime environment supported by the executive were optional. As
Figure 3 illustrates, the unused portion of the executive was additional cost that the zapplication had to
bear for the convenience of using the executive.

— Abstract
User-Generated Program Machine

Application _| Other
Program <+
9 . Predefined
S Routines
]] 1
1 1} 1
—
Unused
Features . Computer

Figure 3. Introduction of Executive in Runtime Environment

For performance and efficiency reasons, applications were divided into multiple threads of control
and multiple applications shared the same underlying computing resource. This underlying
computing resource was permanently extended by the use of the executive or operating system, as
Figure 4 shows. These separate threads of control had to share the extended underlying computing
resources that the bare computer and the executive or operating system provided. The executive was
responsible for managing the concurrency and communication among these various threads of
control. Adherence to the common coding conventions was paramount in this extended operating
environment. Without it there could be no safe coexistence among the threads of control.

In this situation the use of the executive was no longer optional. Consequently the runtime
environment always included some portion of the executive. It would also contain any other
predefined subroutines needed by tae application, as well as the code conventions and data structures
required by the executive and the other predefined subroutines. The runtime environment of an

Framework for Describing Ada Runtime Environments

6

application was highly dependent on the executive. Changing executives required substantial change
to the other parts of the runtime environment to accommodate conventions expected by the executive.

The development of operating systems grew rapidly, with each computer manufacturer providing
operating systems uniquely tuned to their hardware. UNIX® is an interesting anomaly in that it was
adapted to more than one computer system. This was due to its capabilities and ease of use which
overcame any lack of performance over that of the "native" operating system for that computer
system.

Application n
[]

Application 2

Application 1

Executive

Unused | Computer

Figure 4. Introduction of Resource/Concurrency Management in an Executive

The development of executives followed a similar track, although it was slower to develop. Because
of performance and size constraints, executives were usually unique to both the computer system and
the application. The phenomenon of UNIX has been slow to occur in the embedded real-time
application area. Yet transportable and adaptable executives for embedded real-time applications have
appeared and have been used. The appeal of these executives is similar to that of UNIX, namely,
capabilities, ease-of-use, and sufficient performance.

Some configurability was obtainable with both operating systems and executives. All operating

Framework for Describing Ada Runtime Environments

L

e

AN

i

P TR SRR

=

systems were contigured to provide different performance and size characteristics for each computer
system. Likewise the executives available for real-time systems were configured both in their size
and the amount of resources they manage. Both operations were performed manually.

1.2.2 Impact of Programming Languages

Complementing the development of executives was the development of programming language
compilers. Programming language compilers translated source programs by selecting the appropriate
representations of the abstract data structures in the source program and by generating the code
sequences to manipulate the representations of those structures as directed by the statements of the
source programs. Conventions for the selection of data structure representations and for code
generation were established by the writers of the translator. This resulted in the same type of pattern
of code sequences and abstract structure representations as shown in Figure 5.

HOL
source
program
B Compiler-Generated Program o
HOL
code sequences————i 1 compiler
Application bstact 0!
Program | l abstract ©"TT) po—
— poy [ookees T / Program
st IR 71/ Predefined [\ Language
Machine bt [/ Routines linker _ Routines
o g | spomnaendig
Unused
Features Computer

Figure 5. Introduction of Compiled Programming Languages

Additionally there were predefined subroutines that were needed to provide functionality not directly
represented in the data and code generated by the translator. These subroutines, which are the

Fraxpework for Describing Ada Runtime Environments

predefined subroutines in Figure 3, were usually unique to the program language and were available
from the library of predefined subroutines supporting that language. The size and shape of this
"wedge" of supporting subroutines varied with each source program, the capabilities of the translator,

and the capabilities of the underlying computing resource.

Compilers provided the generated code direct access to the underlying computing resource, as Figure
5 shows. By contrast, interpreters that support interpretation, as shown in Figure 6, produced
generated programs which rarely had direct access to the underlying computer; the generated code
contained pseudo-instructions and used abstract data structures that could only be executed by the
runtime interpreter. The runtime interpreter was an integrated set of subroutines that sequenced
through the generated program and executed the instructions of the generated program by invoking

appropriate subroutines that supported that instruction.

HOL
source

program

Transl i
slator Generated HOL
iy translator
<
Application — sems 11
B Gther |
Abstract r==1 . er _
Machine Vo / Predejlnedl\ linker
1 ' Routines
b o = & | g .
!
Interpreter ' o
]
-
Y LI =4
Unused » Computer ' 2
¢ 1

Figure 6. Introduction of Interpreted Program Languages

Framework for Describing Ada Runtime Enviroscuents

Library
of Program
Language

Routines

g, u;};‘AL.‘.i_»_.A“L"LJ

b

9

For programming languages, the runtime environment contained the code conventions and abstract
data structures to represent the high-level features and constructs of the language, and a set of
predefined subroutines that supported those language features which were not represented entirely in
generated code. Each programming language implementation has its own unique runtime
environment, which meant that the same application program may have exhibited different
performance characteristics when it was translated by different programming language
implementations.

The application builder could customize or tailor the performance of the application by the judicious
use of language features in the application. That selection process, in effect, was tailoring the specific
instance of the runtime environment to improve the performance of the application. In fact, many
software engineers quickly learned which language features in a programming language
implementation were the most effective for their applications.

While the runtime environments for applications written in a programming language were rarely as
effective as ones that were hand-built, they were sufficient to accomplish the application. The power,
convenience, and cost savings of using a programming language were sufficient to offset the loss of
performance in the runtime environment.

1.2.3 Combination of Executives and Programming Languages

Executives or operating systems and programming language compilers complemented each other in
providing the runtime environment for application programs. The executives or operating systems
extended the underlying computing resources available to the programming languages by providing
many functions to the programming languages and by enabling the application programs to share the
underlying computing resource among their own internal threads of control as well as those of other
application programs. The programming language compilers provided the implementation of the
abstract data structures and operations found in the application program. Implementations of
functions which the compiler could not represent in generated code were represented as calls to either
predefined subroutines unique to the programming language or to the executive or operating system.

The elements of the runtime environment were jointly provided by both the executive and the
programming language implementation. The runtime environment always inciuded the executive, any
additional subroutines from the library supporting the programming language, and the code
conventions and abstract data structures selected from the language features in the application and

Framework for Describing Ada Runtime Environments

10

required by the executive. The builders of the executives defined the functionality and interface of the
executive. In turn, the builders of the compilers had the responsibility to generate object programs
which adhered to the conventions estaolished by the executive. The elements of the runtime

environment conventions of the executive. This meant that some runtime environment elements from
the programming language were either replaced or modified to match the elements provided by the
runtime environment of the executive. Figure 7 illustrates how thic combined runtime environment
supported an application running on top of a general purpose operating system , such as UNIX.

Compiler-Generated Program

] T]
A
! ’
Application = , 'l l ‘ “ —. Other
—— 4 Predefined
.- ST Routines
Qbst;gct EE: : ”l“'v /
1 1 . s
achine | ,_-.L /. = E B
""" e '+ @ | Operating
[b
Unused ! Computer E g System

—— RTE Supported by Program Language
i||]| RTE Supported by Operating System

Figure 7. Comikination of Program Language and
Operating System to Support RTE

The development of embedded system applications paralleled this separation of responsibility between
executives and compilers. An application was divided into various sections of sequential code which
were encoded in a programming language, such as JOVIAL or CMS-2. A separate complementary

executive was developed to handle the concurrency and communication among those various sections |

of sequential code of the application. Many times the executive was unique to the application, due to
the stringent performance requirements of the application. The runtime environments provided by the
executive and compiler combination very often exhibiter! different performance characteristics that

Framework for Describing Ada Runtime Environments

.n

11

reflected the needs of different application areas. Thus, applications written in the same programming
language exhibited different performance characteristics due to the different performance needs of the
application. This tailoring of the runtime environments to specific applications required the unique
dcvcloi:ment of the compiler and executives for those environments. This p=ttern has been repeated
many times in the course of developing support systems for embedded application systems.

The runtime environments of the same application could be different depending on the capabilities of
the underlying computer resource and the complexities of the programming language features. The
lack of support from the underlying computer resource implies that the missing capabilities must be
supplied by the runtime environment of the programming language and associated executive. The
result is a larger and more complex runtime environment with possible performance ‘penalties.

2. _Ada Runtime Environments

Ada blurs this separation of the responsibilities of runtime environment support between executives
and programming language compilers because Ada includes features for concurrent programming and
storage management, and Ada demands no specific supporting executive. Ada programs for
embedded applications are expected to directly execute on bare computer systems. Consequently,
Ada compilation systems are responsible for providing all the elements of the runtime environment to
support applications written in Ada.

2.1 The Elements of Ada Runtime Environments

The runtime environment (RTE) for Ada consists of the same three elements, abstract data
structures, code sequences, and predefined subroutines, that other languages and executives provide.
The compilation system for Ada selects the appropriate elements as directed by the source Ada
program and as dictated by the underlying computing resource. The resulr, as Figure 8
shows, is a generated Ada program, which is similar to the generated program produced by other
language compilers. The code of the generated Ada program adheres to conventions for data
structures and code that the Ada implementors have selected for representing abstract data types and
program structures in the Ada language. In addition, the generated Ada program may use predefined
subroutines to support features of the Ada language that the Ada implementor has chosen not to
directly represent in generated code. The set of predefined subroutines for any generated Ada
program is called the runtime system (RTS) for that program. These predefined subroutines are
chosen from the runtime library (RTL) for that Ada compilation system. Altogether, the data

Framework for Describing Ada Runtime Environments

12

structures, the code conventions, and the runtime system selected by the Ada implementation for a
generated Ada program provide an Ada virtual machine on which the generated Ada program
executes.

Ada
Source
Program
B Compiler-Generated Program (- An Ada h
.. Public
\ code sequences————"* ! Ada ° Library
Applicatior _| abstract . E '/ Compilation \ e/
Frogram — data — " ») System Ada
M objects > , i
P T l) Huntlme(\ RL‘.JS“me
Ada AR System ey
Virtual — ez =2 T
Machine

Underlying Computer Resource

Figure 8. Ada Compilation System

2.2 Ada Runtime Environments with an Existing Executive

Unlike many other languages, Ada includes high level abstractions for concurrent programming,
exception handling, and resource allocation. The Ada compilation system is expected to provide the
runtime environment that supports these sophisticated features. An Ada compilation system can not
assume that generated Ada programs will be supported by a specific executive or operating system.
This means that the Ada implementation must be tailored directly to the capabilities of the underlying
computing resource. If the underlying computing resource includes an existing executive or operating
system as shown in Figure 9, the Ada implementation may choose iz have the runtime environment
take advantage of some subset of the executive so that the runtime system of subroutines that is
created by the Ada compilation system shares the support of the generated Ada program with the
exccutive. This means that the capability needed to support a feature of the generated Ada program,
such as tasking, may be provided directly by the underlying computing resource (some combination

Framework for Describing Ada Runtime Environments

13

of the bare computer and the executive) or by the runtime system selected for the generated Ada
program. In turn, the runtime system may either provide all the requested capability itself or it may
require assistance from the existing executive of the underlying computing resource. Of course, some
features of the executive of the underlying .computing resource, like some features of the bare
computer, may never be used by the runtime environment, as they may be inconsisteat or
unnecessary to the execution of any generated Ada program.

-

Vitual e =27
Machine | Unused 1
Features

Ada
Source
Program
J
An Ada
Compiler-Generated Program < Sg:’;'rc
code sequences —————— Co r:;;jilaation \ /)
abstract o System N
Application _| data ._I_‘ : :'.’4 / d Ad.a
Program objects { LA Runtime
-- oo, A\ Y Library
: : == runtime . ___)
'yt system k5
Ada coarn SRR xecutive @
=d ’ ‘ g
pw

P

Computer

Figure 9. Ada Compilation System Targeted to an Executive

2.3 Ada Runtime Environments on Bare Machines

The challenging case for Ada compilation systems is the development of runtime environments for
underlying computing resources with no existing executive. All capabilities required by a generated
Ada program that are not directly supported by the bare computer must be supplied by the runtime
system for that generated Ada program, as shown in Figure 10. It is apparent that the runtime system
has all the aspects of an executive, which has caught the attention of those who are concerned about

Framework for Describing Ada Runtime Environments

14

performance. It would be straightforward to build an Ada runtime system executive that supports all
generated Ada programs, as Figure 10 shows. But it does not need to be that way. Ideally, the Ada
compilation system can configure the runtime system of subroutines from the runtime library to
exactly fit the needs of the application written in Ada, just as software engineers have custom built
executives for applications in the past. The result would be the smallest runtime system for that
generated Ada program. In addition, this configuration process could potentially generate a unique
runtime system for each application written in Ada.

Ada
Source
Program .

N

B Compiler-Generated Program (" anAda)

code sequences —————— ¢ Public

o abstract X :/4 Ada Library
Application _ data 1 v Compilation] N\t
Program objects System (Ad \

i a

: : T Runtime

Ada R L Library
Vitlal e el o b —/

Machine | Unused »
Features

Computer

Figure 10. Ada Compilation System for Bare Machine

The runtime environment of the Ada compilation system must always comply with the rules of the
Ada language as defined by the Ada Reference Manual. Yet the Ada Reference Manual provides
significant flexibility in how the runtime environments support the language definition. The runtime
environment is thus allowed to exhibit different performance characteristics (that may reflect the needs
of the application) for the same features or combination of features of Ada. In fact, the Ada Reference
Manual provides the pragma construct as one method to help the Ada compilation systam determine
the performance characteristics that the runtime environment should provide for an application. Thus,
the runtime environment of an Ada compilation system may be able to accommodate an arbitrary
number of interpretations of an application in Ada that comply with the Ada language standard. These

Framework for Describing Ada Runtime Environments

15

interpretations can be guided by the pragma construct or by other mechanisms provided by the Ada
compilation system.

Ada
Source
Program
Compiler-Generated Program ' (An Ada)
Public
' Library
code sequences L Ada
Application absiract o Compilation] N\ mem———’
by ~ - o]
Program data — ! : , System 4 Ada N
)1 eaa ODjCts - Runtime
b " Rurtime BR Library
Ada . System !2 y
[T —R . L O '3
Machine | Unused | Computer :
Features, !

Figure' 11. Ada Compilation System with Fixed Ada Runtime System

It should be clear from the preceding discussion that the more direct support the underlying
computing resource provides the generated Ada program, the smaller the needed "wedge" of runtime
system support for that program. There may be great potential rewards in developing computers that
provide significant direct support of Ada features. Conversely, the less direct support by the
underlying computing resource for the generated Ada program, the greater will be the size of the
“wedge" of runtime system. This may explain the concern of application developers as they begin to
realize the limitations of some existing computers to support the execution of Ada programs.

3. Taxonomy

If a runtime environment for an Ada program is composed of a set of data structures, a set of

conventions for the executable code, and a collection of predefined routines, then the question arises.
what are examples of these elements, and moreover, what is the complete set from which such

Framework for Describing Ada Runtime Environments

16

elements are taken when a particular runtime environment is built? At the same time, the question of
well-defined terminology presents itself. This taxonomy describes a list of functions that can be
expected in the runtime libraries for Ada implementations.

It should be noted that the dividing line between the predefined runtime support library on one hand,
and the conventions and data structures of a compiler on the other hand, is not always obvious. One
Ada implementation may use a predefined routine to implement a particular language feature, while
another implementation may realize the same feature through conventions for the executable code. An
example is the entry sequence for a subprogram.

This taxonomy concerns itself primarily with those aspects of the runtime execution architecture
which are embodied as routines in the runtime library. It does not treat issues of code and data
conventions, nor issues related to particular hardware functionalities, in any great depth.

3.1 Runtime Execution Model.

Behind any implementation of an Ada compiler targeted to a hardware/software configuration is a
model of program execution on that configuration. This model is developed by compiler designers in
order to guide the development process, so that performance and semantic requirements are met by
the Ada programs generated for that configuration.

Ada features such as multitasking and dynamic memory management define a set of design
constraints for the runtime model which must be made to work with an often conflicting set of
constraints derived from the target architecture and operating system.

While the elements of the runtime model affect most parts of the generated code and the
accompanying runtime system, it is convenient here to classify runtime model issues into two main
categories: those affecting the generated code, and those affecting the division of runtime
functionalities between code and runtime routines.

Code sequences are heavily affected by the selected definitions of predefincd types and of
representations used for addressing objects. Related issues include whether there is one or multiple
areas for package (i.e., global) data, what the mechanism for uplevel referencing of objects is (e.g.,

Framework for Describing Ada Runtime Environments

17

static link or display), and what the subprogram call sequences and parameter passing mechanisms
are determined to be. A related issue is the set of conventions for register usage and preservation of
registers across subprogram calls.

Decisions made about the general strategies for dynamic memory management, exception
management and tasking management also impact code sequences, often at a very fundamental level.
Furthermore, the addressing models of a processor may have ramifications throughout the runtime

execution model, affecting such areas as representation of pointers, implementations of runtime type
checks, and even the selection of data structures used in the runtime environment.

The split of functionalities between code sequences and runtime routines is another set of issues
which must be resolved in the runtime model. Decisions regarding this partitioning are also very
influenced by the capabilities and limitations of the target configuration.

In this area, decisions are made regarding how much of the tasking constructs are handled by inline
code versus via calls to runtime routines. Similarly, tmemory management functions are divided
among runtime routines and code sequences. Analogous decisions are made regarding the treatment
of exception ménagemsnt functions, Ada attributes and commonly invoked routines such as
multi-word arithmetic operations.

The main point of note regarding this category is that, while it is possiole to define abstract interfaces
“escribing the necessary functionalities, the best decisions regarding allocation of these functionalities
to either of code or runtime routines are highly situational, and must be determined based upon the
particular target architecture and the performance goals in various areas for the compilation system.

Additional aspects of the runtime model hinge upon appropriate use of the target instruction set
architecture, and other target or operating system-dependent issues.

The runtime model resulting from the decisions broadly described here defines the constraints for the
desiy:. of the runtime environment components listed in the remainder of this taxonomy.

Framework for Describing Ada Runtime Environments

18

3.2 Dynamic Memory Management

During the execution of an Ada program, it will usually becomr. necessary to dynamically create
objects. This may happen because a subprogram with locally de.ined data is called, because an Ada
allocator is executed, or because the compilation system generates an anonymous temporary object for
the purposes of computation.

When such objects are created, storage is allocated to represent them. Storage is also allocated at times
for objects defined in the runtime environment, which have no obvious representation in a particular
Ada program.

The Dynamic Memory Management function is that part of the runtime environment which
concerns itself with the allocation and deallocation of storage at runtime. This function is also

responsible for detecting when a request for storage cannot be fulfilled, and for raising the exception
STORAGE_ERROR as appropriate.

Generally, there are two main protocols for dynamic memory management in an Ada runtime
environment: stack structured and heap structured allocation schemes. There are a number of
common variations of these.

The local variable sets of subprograms behave like a stack in the sense that their lifetimes are nested.
It is therefore useful to associate a stack with each Ada task, as well as with the main program. Note
that this does not imply any particular implementation of the stack. The Stack Management
function for Storage Management allocates and deallocates space on the stack and checks for stack
overflow. Note that an implernentation will typically nnt only place local variables on the stack, but
~ill also include various administrative variables such as return addresses, lexical parent pointers,
dependent task countess, etc. in the “activation record” for a subprogram. The Stack Management
function is usuuily implemented via generated code sequences, rather than via runtime routines.

The lifetimes of objects that are created by Ada allocators tend to be more difficult to predict than
those of objects associated with a subprogram activation. While there is a relationship between the
scope ir which an access type is defined and the collection of objects associated with the type, the
lifetime of each such obje. 1 is generallyy not amenable to determination at compilation time.

Framewark for Describing Ada Runtime Environments

19

Therefore, the allocation and deallocation of storage for these objects usually does not take advantage
of predetermined lifetime characteristics of these objects. This type of memory management is the
domain of the Heap Management function, which is usually implemented with runtime routines.
(Note that pragma CONTROLLED dictates a Heap Management approach which takes advantage of
the pattern mentioned above regarding access types and scopes defining them).

In general, Heap Management administers storage so that random patterns of allocations and
deallocations can be handled. The function derives its name from the fact that a pool of memory
managed in such a fashion is commonly called a "heap".

The Heap Management function implements the allocation of storage for objects that are created
through Ada allocators, and it also may provide storage allocation for objects that are internal to the
Ada runtime environment or temporaries generated by the compiler. Note that no assumptions are
made about the organization of the heap storage. There may be a single system-wide heap, or there
may be one heap for each Ada task (and for the main program). If length clauses for collections are
implemented, there may be special arrangements for the storage set aside for collections.

Furthermore, there are a number of approaches to reclamation of unused storage. There may be no
reclamation, only explicit reclamation (via UNCHECKED_ DEALLOCATION), various kinds of
garbage collection schemes, pragma CONTROLLED-style reclamation, or a combination of these.

3.3 Processor Management

If an Ada program utilizes Ada's multi-tasking facility (that is, if it contains Ada tasks), then its
execution can be viewed as the parallel execution of a family of tasks. Each individual Ada task
oscillates, throughout its lifetime, between being "logically executing” and "blocked". Tasks are
blocked for a number of reasons: they may be waiting for a rendezvous that is currently not possible;
they may be waiting for delays to expire which they have specified in a delay statement; they may be
waiting for the termination of dependent tasks; or they may be waiting for the activation of newly
created tasks. In this context, the only reason why a rendezvous should be considered impossible
would be that no appropriate partner task has reached a point in its execution where it is prepared to
engage in the desired rendezvous.

Tasks are "logically executing” if they could execute, provided enough processing resources were
available. In a uniprocessor system, one of all the tasks that are "logically executing" will actually be

Framework for Describing Ada Runtime Environments

executing on the physical processor.

The Processor Management function implements the assignment of physical processors to tasks
that are "logically executing”. The Processor Management function is invoked by other components
of the runtime environment, in order to block and unblock tasks. It keeps a list of those tasks which
are "logically executing" and uses this list, in conjunction with the priorities of tasks, to determine
which task or tasks should be assigned to processors.

Note that there are a variety of approaches to selecting which tasks actually run at any given time.

3.4 Interrupt Management

If the underlying computing resource implements asynchronous events such as interrupts (in bare
machines), signals (as in UNIX), or asynchronous system traps (as in VMS), the Ada runtime
environment will usually contain an Interrupt Management function that reacts to these
asynchronous events. In addition to truly asynchronous events such as timer interrupts, I/O
interrupts, and hardware failures, the Interrupt Management function also reacts to events that are
program synchronous (such as arithmetic overflow), but that are signalled through the same
mechanism as truly asynchronous events.

In several contexts, the Interrupt Management function acts as an intermediary between the underlying
computing resource and various other parts of the Ada runtime environment. For example, interrupts
related to I/O devices are recognized and then passed on to the I/O Management function, by invoking
the appropriate interrupt routine in the /O Management function. Interrupts from hardware timers are
passed on to the Tinie Management function. Those interrupts that are actually traps, signalling
conditions that correspond to predefined Ada exceptions, are passed on to the Exception Management
function. Spurious interrupts are handled locally in the Interrupt Management function.

If address clauses for task entries are implemented, the Interrupt Management function utilizes the
Rendezvous Management function to realize interrupt rendezvous.

The Interrupt Managesment funciion is » ,ponsibie for initalization of the interrupt mechanism of the
underlying computing resource, and it is also responsible for resetting that mechanism after an
interrupt has occurred, if the architecture of the underlying computing resource requires such
resetting. (An example is the sending of an "end of interrupt" acknowledgment to an external

Framework for Describing Ada Runtime Environments

interrupt controller.)

3.5 Time Management

The Time Management function consists of all those portions of the runtime environment that
will support the predefined package CALENDAR and the implementation of delay statements. If the
underlying computing resource offers enough functionality, the support of package CALENDAR is
trivial. As in the case for predefined I/Q) packages, this document considers package CALENDAR, if
it is included with a particular Ada program, as part of the runtime environment.

The support of delay statements depends on the characteristics of the underlying computing resource
as well. It will usually include some form of bookkeeping of outstanding delays. This part of the
Time Management function cooperates with the Rendezvous Management function in the
implementation of select statements (in particular: timed entry calls and selective wait statements with
delay alternatives).

3.6 Exception Management

Both predefined and user-defined Ada exceptions may be raised at any point during the execution of
an Ada program. While user-defined exceptions can only be raised explicitly through a "raise”
statement, predefined exceptions may also be raised because particular conditions are detected in the
underlying computing resource.

Whenever an exception is to be raised, the Exception Management function is invoked. This
function implements Ada semantics for exceptions: that is, it determines whether there is a matching
handler for the exception at hand, and if there is one, it transfers control to the handler. If there is no
matching handler, it invokes the Task Termination function to terminate the task at hand or the main
program.

If the search for a matching handler involves propagating the exception out of the frame in which it
was first raised, the Exception Management function simulates an "orderly return" of the frame that is
thus completed. In order to do so, it may, for example, invoke the Dynamic Memory Management
function and/or the Task Termination function.

Framework for Describing Ada Runtime Environments

22

If the exception is propagated out of an accept statement or out of the elaboration of the declarative
part of a task body, the Exception Management function implements the raising of the appropriate
exception in the rendezvous partner task or the creating task, respectively.

The Exception Management function may use static variables that are created at compile time, such as
tables of exception handlers that are defined for a particular frame. It r:ay also cooperate with the
Call/Return function, in order to set up mechanisms for accessing such variables.

3.7 Rendezvous Management

The Rendezvous Management function implements the semantics of the Ada rendezvous
concept. In order to do so, it utilizes variables that are internal to the runtime environment. These
variables reflect, among other things, which tasks are blocked because they are waiting to rendezvous
with other tasks, and what the exact circumstances of these wait states are. The Rendezvous
Management function cooperates with the Interrupt Management function in the implementation of
interrupt rendezvous, if interrupt rendezvous is supported by the runtime environment.

3.8 Task Activation

The Ada language allows for the dynamic creation of tasks. Whenever a task is created, two steps
can be distinguished: First, one or several variables are created to represent a task object. These
variables will be used during the lifetime of the task to reflect its current state, as well as its
relationship with other tasks. At some point after the task object has been created, the execution of
the new task has to be started. This is effected by the Task Activation function. The Task
Activation function is invoked by the creator of a new task in order to start the new task's activation
(which is defined as the execution of the declarstive part of the task's body). The Task Activation
function may also be invoked by the new task in order to signal the completion of that task's
activation.

3.9 Task Termination

Framework for Desenbing Ada Runtime Environments

. 5

Lk

Apaanig

LEs b’%hﬁ.&uu i

X ";r_! LA bt Ll P Sk

23

The Ada language includes a set of rules for the completion, termination, and abortion of tasks. The
Task Termination function implements these rules. In order to do so, it utilizes variables
reflecting task dependence that are maintained throughout the execution of the Ada program, and in
particular by the Call/Return function and by the Task Activation function.

3.10 I/0 Management

The J/O Management function consists of all those portions of the runtime environment that are
provided for the support of input and output. This includes in particular all those functions that
support predefined packages from Chapter 14 of the Ada Reference Manual. Whether these
predefined packages themselves, as far as a particular runtime environment includes them, should
also bz considered part of the runtime environment, or as part of the Ada program that is being
supported by the runtime environment, seems to be a philosophical issue. To have a well-defined
terminology, and only for this reason, this document includes in the definition of the /O Management
function those predefined packages that are defined in Chapter 14 of the Ada Reference Manual.

On the other hand, the /O Management function may, in one implementation, provide functions that
are present in Me underlying computational resource in a different implementation. The dividing line
is again somewhat arbitrary. To have a well-defined terminology, and agair{ onli/ for this reason, this
taxonomy includes in the definition of the I/O Management function only those components that are
not already integral parts of the underlying computing resource.

The VO Management function of a particular Ada runtime environment may include components that
have no counterpart in Chapter 14 of the Ada Reference Manual. On the one hand, there may be
components that are internal to the runtime environment, such as a page I/O handler if the runtime
environment implements paging. On the other hand, an Ada imrplementation may offer the user
additional I/O facilities which have no counterpart in the Ada Reference Manual.

3.11 Commonly Called Code Sequences

This category is somewhat of a "catch-all". It includes runtime routines in the classical sense:
commonly called sequences of code. Typical cxamples are operations for multi-word arithmetic,
block moves and string operztions. Ada attribute calcuations aiso fall into this category.

Framework for Describing Ada Runtime Environments

24

3.12 Target Housekeeping Functions

Typically, there is a series of actions, called Target Housekeeping functions, associated with
starting up and terminating the execution environment of an Ada program. Such actions include
determination of the particular hardware and software execution environment, setting of variables
identifying same, processor and interrupt initializations, and so on. Similarly, if a program
terminates, control is typically returned to some surrounding software whose state must be reset upon
program exit. '

A runtime environment is defined by the common coding conventions, the data structure
representations, and the predefined subroutines that support the execution of an application program.
The runtime environment provides the abstract machine on which the application program executes.
Traditionally, the runtime environment has been supplied jointly by the programming language
-compiler for the programming language of the application and by the executive on ‘which the
application executes. The executive provides the predefined subroutines that supply many-of the
functions and that manage many of the resources used by the application. The programming language
translator provides the other elements of the runtime environments. It selécts the data structure
representations and enforces the common code conventions that support the remaining functionality of
the application and that adhere to the interface provided by the executive.

Because Ada provides high level features for concurrent programming and for dynamic storage
allocation, an Ada compilation system is responsible for providing:all the elements of the Ada runtime
-environment. In addition to the compiler, which selects the data structure representations and
enforces common code conventions, the Ada compilation system includes a runtime library of
predefined subroutines that support all the features of Ada source programs which cannot be
represented in code generated by the Ada translator. From this runtime library the Ada compilation
system selects the appropriate subroutines to support the specific features of Ada used in an
application. The set of selected subroutines constitutes the runtime system for that application. In
‘theory, each application can have a unique runtime system configured for it. The sizc of the runtime
system configured to support an application in Ada is-influenced by the nature-and functionality of the
underlying computing resource. The runtime environment of an Ada compilation system may be able

Framework for Describing Ada Runtime Environments

25

to accommodate an arbitrary number of interpretations of an application in Ada that comply with the
Ada language standard. The more direct support that the underlying computing resource provides for
® the functionality of the features of Ada the smaller the configured runtime system needs to be.

Framework for Describing Ada Runtime Environments

26

Glossary of Terms

abstract machine - Set of capabilities provided by an instance of the runtime environment to an
application program.

Ada compilation system - All the elements necessary to translate an Ada application program into
an executable program; this usually includes the compiler, the linker, and the runtime library.

common code conventions - Set of rules to follow for implementing control and data structures
in a software application.

Dynamic Memory Management function - that part of the Ada runtime environment which
concerns itself with the allocation and deallocation -of storage at runtime; it consists of a Stack
Management subfunction that allocates and deallocates space on the stack and checks for stack
overflow and a Heap Management subfunction that allocates and deallocates more random
requests for stbrage and checks for adequate storage space in the heap.

Exception Management function - That part of the Ada runtime environment which implements
Ada semantics-for exceptions: that is, detection of an-exception and selection of the appropriate
handler if one exists; if there is no matching handler, it invokes the Task Termination function to
terminate the task at hand or the main program.

executives - Set of capabilities, usually in software, to extend and share the bare embedded
computing resources among one or more software applications.

generated program - The set of instructions and data in a machine executable representation that is
directly produced by the compiler from the application program.

Interrupt Management function - That part of the Ada runtime environment which manages-the
response to asynchronous and synchronous-events; examples of asynchronous events are timer
interrupts, 1/O interrupts, and hardware failures, while examples of synchronous events are
arithmetic overflow and constraint error; acts as an intermediary between the underlying computing
resource and various other parts of the Ada runtime environment.

I/O Management function - That part of the Ada runtime environment which supports input and

Framework for Describing Ada Runtime Environments

27

output, including all of the functions that support predefined packages from Chapter 14 of the Ada
Reference Manual.

-operating systems - Set of capabilities, usually in software, to extend and share the bare general
purpose computing resources among one or more software applications.

Processor Management function - That part of the Ada runtime environment which assigns
physical processors of an underlying computer resource to tasks that are "logically executing"; it
maintains a list of tasks which are "logically executing” and a list of tasks which are "blocked."”

programming language compils .ion system - Set of programs that automatically translate an
application program written in a Ligh level representation into an application program in a machine
executable representation; also known as a compiler.

Rendezvous Management function - ““hat part of the Ada runtime environment which
implements the semantics .{ the Ada rendezvous concept.

runtime environment - Set of all capzbilities provided by three basic elements: predefined-

subroutines, abstract data conventions, and control structure code conventions.

-runtime library (RTL) - Set of all the predefined routines in a machine executable representation

that support all the functionality of an application program language that is not supported in code
generated from application programs.

runtime system (RTS) - Set of predefined routines in a machine executable representation that is-

selected by the Ada compilation system from-a runtime library to support functionality of the
application program not supported in the generated program.

Target Housekeeping function - That part of the Ada runtime environment which is responsible
for starting-up and terminating the execution environment of an Ada program.

Task Creation and Activation function - That part of the Ada runtime environment which -

creates the storage and-task management structures for a task, starts the-execution of a task (task
activation), and signals the completion of that task's activation.

Framework for Describing Ada Runtime Environments

28

Task Termination function - That part of the Ada runtime environment which supports the
completion, termination, and abortion of tasks; it maintains task dependence for determine the extent
of termination and abortion; it releases ali storage to terminated and aborted tasks.

Time Management function - That part of the Ada runtime environment which supports the
implementation of delay statements and the predefined package CALENDAR,; if time slicing is

provided by the Processor function, this function would provide the timing support.

underlying computing resource - The combination of bare computer and operating
system/executive available to the runtime environment of a software application.

Framework for Describing Ada Runtime Environments

SN A)

S

s B RS

Linadansisd B

Distribution List for IDA Memorandum Report M-540

NAME AND ADDRESS NUMBER OF COPIES

Sponsor

Dr. John F. Kramer 4
Program Manager

STARS

DARPA/ISTO

1400 Wilson Blvd.

Arlington, VA 22209-2308

Other

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

IDA

General W.Y. Smith, HQ

Ms. Ruth L. Greenstein, HQ

Mr. Philip L. Major, HQ

Dr. Robert E. Roberts, HQ

Mr. James Baldo, CSED

Dr. Richard-J. Ivanetich, CSED
IDA Control & Distribution Vault

(S e R

Distribution List-1

